A PRIMER ON THE FIBONACCI SEQUENCE: PART II

S. L. Basin and Verner E. Hoggatt, Jr. San Jose State College, San Jose, Ca.

A MATRIX WHICH GENERATES FIBONACCI IDENTITIES

The proofs of existing Fibonacci identities and the discovery of new identities can be greatly simplified if matrix algebra and a particular 2 x 2 matrix are introduced. The matrix approach to the study of recurring sequences has been used for some time [1] and the Q matrix appeared in a thesis by C. H. King [2]. We first present the basic tools of matrix algebra.

1. THE ALGEBRA OF (TWO-BY-TWO) MATRICES

The two-by-two matrix A is an array of four elements a, b, c, d:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The zero matrix Z and the identity matrix I are defined as

$$\mathbf{Z} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \text{and} \qquad \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The matrix C, which is the matrix sum of two matrices A and B, is

$$C = A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a + e & b + f \\ c + g & d + h \end{pmatrix}$$

The matrix P, which is the matrix product of two matrices A and B, is

$$P = AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

The determinant D(A) of matrix A is

$$D(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Two matrices are equal if and only if the corresponding elements are equal. That is, for the matrices A and B above, A = B if and only if a = e, b = f, c = g, and d = h.

The proof of the following simple theorem is left as an exercise in algebra.

THEOREM: The determinant D(P) of the product P = AB of two matrices A and B is the product of the determinants D(A) and D(B). That is, $D(P) = D(AB) = D(A) \cdot D(B)$.

2. THE Q MATRIX

The Q matrix and the determinant of Q are

$$Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad D(Q) = -1.$$

If we designate $Q^0 = I$, the identity matrix, then $Q = Q^1 = Q^0Q = IQ = QI = QQ^0$.

<u>Definition</u>: $Q^{n+1} = Q^n Q^1$, an inductive definition where $Q^1 = Q$. This provides the law of exponents for matrices.

It is easily proved by mathematical induction that

$$Q^{n} = \begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix}$$

where F_n is the nth Fibonacci number, and the determinant of Q^n is $(-1)^n$.

3. MORE PROOFS

We may now prove several of the identities very nicely. Let us prove identity (3) from Part I:

$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

Proof: Evaluate the determinant of Q^n in two ways. $D(Q^n) = D^n(Q) = (-1)^n$, but by definition of determinant, $D(Q^n) = F_{n+1}F_{n-1} - F_n^2$.

Now let us prove identity (7), $F_{2n+1} = F_{n+1}^2 + F_n^2$. Since $Q^{n+1}Q^n = Q^{2n+1}$,

$$Q^{n}Q^{n+1} = \begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix} \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_{n} \end{pmatrix} = \begin{pmatrix} F_{n+1}F_{n+2} + F_{n}F_{n+1} & F_{n+1}^{2} + F_{n}^{2} \\ F_{n}F_{n+2} + F_{n-1}F_{n+1} & F_{n}F_{n+1} + F_{n-1}F_{n} \end{pmatrix}$$

can also be written as

$$Q^{2n+1} = \begin{pmatrix} F_{2n+2} & F_{2n+1} \\ F_{2n+1} & F_{2n} \end{pmatrix}$$

Since these two matrices are equal, we may equate corresponding elements, so that

$$F_{2n+2} = F_{n+1}F_{n+2} + F_nF_{n+1}$$
 (Upper Left)

(7)
$$F_{2n+1} = F_{n+1}^{2} + F_{n}^{2} \qquad (Upper Right)$$

$$F_{2n+1} = F_{n} F_{n+2} + F_{n-1} F_{n+1} \qquad (Lower Left)$$

$$F_{2n} = F_{n} F_{n+1} + F_{n-1} F_{n} \qquad (Lower Right)$$

establishing identity (7) as well as two others with some simple algebra. If we accept identity (5), $L_n = F_{n+1} + F_{n-1}$, then

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n = F_n (F_{n+1} + F_{n-1}) = F_n L_n$$

which gives identity (9). From $F_{k+2} = F_{k+1} + F_k$, for k = n - 1, one can write $F_n = F_{n+1} - F_{n-1}$, so that we also have identity (8):

(8)
$$F_{2n} = F_n(F_{n+1} + F_{n-1}) = (F_{n+1} - F_{n-1})(F_{n+1} + F_{n-1}) = F_{n+1}^2 - F_{n-1}^2$$

It is a simple task to verify that $Q^2 = Q + I$, leading to

$$Q^{n+2} = Q^{n+1} + Q^n$$
 and $Q^n = Q \cdot F_n + I \cdot F_{n-1}$,

where $\mathbf{F}_{\mathbf{n}}$ is the nth Fibonacci number and the multiplication of matrix A, by a number q, is defined by

$$qA = q\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} aq & bq \\ cq & dq \end{pmatrix}$$

4. GENERATION OF FIBONACCI NUMBERS BY LONG DIVISION

$$\frac{1}{1-x-x^2} = F_1 + F_2 x + F_3 x^2 + \dots + F_n x^{n-1} + \dots$$

In the process of long division below

$$1 - x - x^2$$
) 1

there is no ending. As far as you care to go the process will yield Fibonacci numbers as the coefficients.

5. F AS A FUNCTION OF ITS SUBSCRIPT

It is not difficult to show by mathematical induction that

$$F_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right\}$$

This can be derived in many ways. P(1) and P(2) are clearly true. From $F_k = F_{k-1} + F_{k-2}$ and the inductive assumption that P(k-2) and P(k-1) are true,

$$F_{k-2} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k-2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-2} \right\}$$

$$F_{k-1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \right\}$$

Adding, after a simple algebra step, we get

$$F_{k-1} + F_{k-2} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k-2} \left(\frac{1 + \sqrt{5}}{2} + 1 \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-2} \left(\frac{1 - \sqrt{5}}{2} + 1 \right) \right\}$$

Observing that

$$\frac{1+\sqrt{5}}{2} + 1 = \frac{3+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 \text{ and } \frac{1-\sqrt{5}}{2} + 1 = \frac{3-\sqrt{5}}{2} = \left(\frac{1-\sqrt{5}}{2}\right)^2$$

it follows simply that if P(k-2) and P(k-1) are true, then for n = k,

$$F(k):$$
 $F_{k} = F_{k-1} + F_{k-2} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k} \right\}$

making the proof complete by mathematical induction.

Similarly, it may be shown that

$$L_n = F_{n+1} + F_{n-1} = \left(\frac{1 + \sqrt{5}}{2}\right)^n + \left(\frac{1 - \sqrt{5}}{2}\right)^n$$

The formulas given for F_n and L_n in terms of the subscripts are called the Binét forms for F_n and L_n .

Now let us use the Binét forms for F_n and L_n to prove identity (9), $F_{2n} = F_n L_n$, a second way:

$$F_{2n} = \frac{1}{\sqrt{5}} \left\{ \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} \right]^{2} - \left[\left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right]^{2} \right\}$$

$$= \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right\} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{n} + \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right\} = F_{n} L_{n}.$$

6. MORE IDENTITIES

(15)
$$F_{n} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right\}$$

(16)
$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

(17)
$$F_1^3 + F_2^3 + F_3^3 + \dots + F_n^3 = \frac{F_{3n+2} + (-1)^{n+1} \cdot 6 \cdot F_{n-1} + 5}{10}$$

(18)
$$1 \cdot F_1 + 2 \cdot F_2 + 3 \cdot F_3 + \dots + n \cdot F_n = (n+1)F_{n+2} - F_{n+4} + 2$$

(19)
$$F_2 + F_4 + \dots + F_{2n} = F_{2n+1} - 1$$

(20)
$$F_1F_2 + F_2F_3 + F_3F_4 + \cdots + F_{n-1}F_n = \frac{1}{2} (F_{2n-1} + F_nF_{n-1} - 1)$$

(21)
$$\sum_{i=0}^{n} {n \choose i} F_{n-i} = F_{2n}, \text{ where } {n \choose i} = \frac{n!}{(n-i)!i!}, m! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot m.$$

(22)
$$F_{3n+3} = F_{n+1}^3 + F_{n+2}^3 - F_n^3$$

(23)
$$F_n F_m - F_{n-k} F_{m+k} = (-1)^{n-k} F_k F_{m+k-n}$$

(24)
$$F_{n+4}^3 = 3F_{n+3}^3 + 6F_{n+2}^3 - 3F_{n+1}^3 - F_n^3$$

REFERENCES

- 1. J. S. Frame, "Continued Fractions and Matrices", American Mathematical Monthly, February, 1949, p. 98.
- Charles H. King, "Some Properties of the Fibonacci Numbers", Unpublished Master's Thesis, San Jose State College, June, 1960.