FIBONACCI NUMBERS AND GEOMETRY

Brother Alfred Brousseau
St, Mary's College, California

The Fibonacci relations we are going to develop represent a special
case of algebra. If we are able to relate them to geometry we should take a
quick look at the way algebra and geometry can be tied together.

One use of geometry is to serve as an illustration of an algebraic
relation. Thus

(a + b)2 = az + 2ab + b2

is exemplified by Figure 1.

Figure 1

A second use of geometry is to provide a PRCOF of an algebraic relatioan.
As we ordinarily conceive the Pythagorean Theorem (though this was not the
original thought of the Greeks) we tend to think of it as an algebraic rela-
tion on the sides of the triangle, namely,

c2_= az + ba .

One proof by geometry of this algebraic relation is shown in Figure 2.
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Figure 2

In summary, geometric figures may illustrate algebraic relations or they may
serve as proofs of these relations. In our development, the main emphasis

will be on proof though obviously illustration occurs simultaneously as well,
SUM OF FIBONACCI SQUARES

In the standard treatment of the Fibonacci sequence, geometry enters
mainly at one point: summing the squares of the first n Fiboracci numbers.
Algebraically, it can be shown by intuition and proved by induction that the

sum of the squares of“%he first n Fibonacci numbers is FnFn+1 . But there

is a geometric pattern which ILLUSTRATES this fact beautifully as shown in
Figure 3.

F

[l V]

= FnFn+1

Figure 3
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The figure is built up as follows. We put down two unit sguares which are

the squares of Fl and FZ. Now we have a rectangle of dimensions 1 by 2, On

the right of this can be placed a square of side 2 (F3) which gives a 2 by 3
‘rectangle. Then below can be set a square of side 3 (Fh) which produces a

rectangle of sides 3 and 5. To the right of this can be placed a square of
side 5 (FS) which gives a 5 by 8 (F5 by F6) rectangle, and so on.

This is where geometry begins and ends in the usual treatment of
Fibonacci sequences. For if one tries to produce a similar pattern for the
sum of the squares of any other Fibonacci sequence, there is an impasse. To
meet this road block the following detour was conceived. »

Suppose we are trying to find the sum of the squares of the first n
Lucas numbers. Instead of starting with a square, we put down a rectangle
whose sides are 1 and 3, the first and second Lucas numbers. (Figure 4
illustrates the general procedure.) Then on the side of length 3 it is

possible to place a‘square of side 3: this gives a 3 by 4 rectangle.,

TT

e = ToTner = T (T2 = Ty)

Figure &4

Against this can be set a square of side 4 thus producing a 4 by 7 rectangle.
On this a square of side 7 is laid giving a 7 by 11 rectangle. Thus the same
process that operated for the Fibonacci numbers is now operating for the
Iucas numbers. The only difference is that we began with a 1 by 3 rectangle
instead of a 1 by 1 square. Hence, if we subtract 2 froz the sum we should
have the sum of the squares of the first n Lucas numbers. The formula for
this sum is thus:

IR EaY ¥ X ¥ Yull
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n
(l) Z Llat = LnLn+l - 2 .
k=1

Using a direct geometric approach it has been possible to arrive at this
algebraic formula with a minimum of effort. By way of comparison it may be
noted that the intuitional algebraic route usually leads to difficulties for
students.

Still more striking is the fact that by using the same type of
procedure it is possible to determine the sum of the squares of the first n
terms of ANY Fibonacci sequence. We start again by drawing a rectangle of

sides Ty and T, (see Fig. L), On the side T, we place a square of side T,

to give a rectangle of sides TZ and T,. Against the '1‘3 side we set a square

3

of side T3 to produce a rectangle of sides T3 and Th' The operation used in

the Fibonacei and Lucas sequences is evidently working again in this general
case, the sum being TnTn+l if we end with the nth term squared. But

instead of having the sqﬁare of Tl as the first term, we used instead TlTZ'

Thus it is necessary to subtract TlT2 - Ti from the sum to arrive at the

sum of the squares of the first n terms of the sequence. The fcrmula that

results is:

n
(2) EE Ti = TpTha - Tl(TZ = Tl) =T T - T1ilo *
k=1

ILLUSTRATIVE FORMULAS

2

The design in Figure 1 for (a + b)2 = a“ + 2ab + b2 can be used to

illustrate Fibonacci relations that result from this algebraic identity.
For example,
)2 2 2

=Fa* 2Fh+lrn-l +Fi

2
Ln - (Fn+l + Fn-l

This evidently leads to nothing new but the algebraic relations can be
exemplified in this way as speclal cases of a general algebraic relation

which is depicted by geometry.

LARGE SQUARE IN CNE CORNER

We shall deal with a number of geometric patterns which can be

employed in a variety of ways in many cases. In the first type we place in
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one corner of a given figure the largest possible Fibonacei (or lucas) square

that will fit into it.

Figure 5.)

Take, for example, a square whose side is Fn.

F
Fn-a
Fos -
Fn-l
n-3

2 _ =2 2 2

Fn = Fn-l + 3Fh P 2 zz Fk
k =
Figure 5

(See

n-2

This being the sum of Fn-l and Fn-a’ a square of side Fn-l can be put into

one corner and its sides extended.
side Fn-2 o From the two rectangles can be taken squares of side Fn_2 leaving

two smaller rectangles of dimensions Fn-

2 and Fn-3'

In the opposite corner is a square of

But by what was found in

the early part of this discussion, such a rectangle can be represented as the

sum of the first n - 3 Fibonacei squares. We thus arrive at the formula:

(3 F

As a second example, take a square of side En =F

n+l * Fn-l‘ (See

Figure 6.) 1In one corner is a square of side Fn+1 and in the opposite a

square of side Fn-l'

The rectangles have dimensions Fn+l and F

~ But Fn+

n-1° 1

equals 2!}_1 + Fn-a’ so that each rectangle 'contains two squares of side

Fn-l and a rectangle of sides Fn-l and Fn-a.

results:

Thus the following formula

Tty Y ¥ XK

0
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n=2
2 2 2 2
(4) Ln = Fn-rl + an-l +2 EE Fk *
k=1
En-l Fn-2
m
4 Fn+l
k L, >
n-2
2 2 2 2
Ll =Fl, +5F ; +2 Z Fy
k=1
Figure 6

CYCLIC RECTANGLES -
A second type of design leading to Fibonacci relations is one that may
be called cyclic rectangles. Take a square of side Tn+l’ a general Fibonaceci
number. Put in one corner a rectangle of sides '1'n and Tn-l (Figure 7).

The process can be continued until there are four such rectangles in a sort
of whorl with a square in the center. This square has side Tn - Tn-l or

Tn-z‘ Accordingly the general relation for all Fibonacci sequences results:
2 2
(5 The1 = uTnTn-l *+Tha e
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n-l n
Tn-2
k Tn+1 g
2 2
Tn+l - 4TnTn-1 + Tn-Z
Figure 7

As another example of this type of configuration consider a square of side Ln

and put in each corner a rectangle of dimensions 2Fn-1 by Fn. (See Fig. 8.)

n n-1

n=3

2
Ln = 8Fth_1 + Fn-

3
Figure 8
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Again, there is a square in the center with side aFn-l - F a F - F

n n-1 ne2

or Fn-}' Hence:

NS

2
6) 12=8 2 3

n FnFn-l
OVERLAPPING SQUARES IN TWO OPFOSITE CORNERS

Construct a square whose side is Tn+1 which equals Tn + Tn-l' In two

opposite corners place squares of side '1'n (Fig. 9). Since Tn is greater than

n=2

PEE——
Tn+l
2 2 2 2

The1 = 23T5 * 2T 5 -T2
Figure 9
half of Tn+1 it follows that these squares must overlap in a square. The
side of this square is Tn - Tn-l = Tn-z' The entire square is composed of

two squares of side Tn and two squares of side Tn-l' ‘But since the area of
the central square of side Tn-a has been counted twice, it must be subtracted

once to give the proper result. Thus:

2 _ o2 2 2
(?) Tn+1 = aTn + ZTn-1 - Tn-2 ’

a result applying to ALL Fibonacci sequences.

=2F In opposite

ne1 * F

n-2 °*

corners, place squares of side 2Fn-1' (See Figure 10.) Then the overlap

Exarple 2. Take a square of side Fn+1

square in the center has side 2Fn-1 - Fn-a = Fn-l + Fn-} = Ln-Z‘ Thus:
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2 _ 2 2 2
(8) P2, = 8F;_  +2F_, -L2 .
2Fn-l Fn-2
e _y
" Fral
2 2 2 2
Fn+1 = 8Fn-l * 2Fn-2 - Ln-2
Figure 10
Third example., A square of side Ln = Fn+l + Fn-l has a central

overlap square of side Fn+1 - Fn-l = Fn' Accordingly,
2 2 2 2
(9) Ln = 2Fn+1 + 2Fn-1 - Fn .

Final exarple. In a square of side Ln = 2?n-l + Fn' place in two
opposite corners squares of side ZFn_l. The overlap square in the center
has side 2F , = F,=F,, - Foo = Fn-} o« (See Figure 11.) Hence:

2 2

2 2
(10) L, =8F y+2F =F 5.

ainy ¥ I X In
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2F

n=1 n
I L, A
2 2 2 2
Ln = 8Fn-1 + ZFn - Fn-}
Figure 11

NON-OVERLAFPING SQUARES IN FOUR CORNERS

Consider the relation Tn%l = ZTn-l + Tn-a’ Each side of the square

T T in that order (Fig. 12).

can be divided into segmeiils Tn- na2? n-1l

l'

Tn+1 : 1

+ 4Tn-1Tn-2 + Tn_a

Figure 12
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There are now four squares of side Tn-l in the corners, a square of side

Tn_2 in the center and four rectangles of dimensions Tn-l and Tn-a'

this results the formula

b 7 2

2 2
(11) T = 4T n-1'n-2 ¥ *n-2

n+l n-1*
which applies to ALL Fibonacci sequences.

OVERLAPPING SQUARES IN FOUR CORNERS

From

We §tart with ?n+1 = Fn + Fh-l and put four squares of side Fn in

the corners (Fig. 13). Clearly there is a great deal of overlapping.

X
Fn-?_
- Fn
*n-1 ¥
2 Fop ——
o,y = b - WF, 1Faa - Fh,

Figure 13

The

square at the center of side Fn - Fh-l = Fn-z is covered four times; the

four rectangles are each found in two of the corner squares so that this

rectangle must be subtracted out four times. The central square being

covered four times must be subtracted out three times. 4s a result the

following formula is obtained:

2 42 - 4 _F | 2

(12) Fre1 n n-1¥n-2 = g

RN YYY Yait
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OVERLAPPING SQUARES PRCJZCTING FROM THE SIDES

We start with the relation Ln = Fn + ZFn-l and divide the side into

segments F_ ., Foo Fp_q in that order (Fig. 14). On the F, segments build

squares which evidently overlap as shown. The overlap squares in the corners
of these four squares have a side Fn - Fn-l = Fn-z while the central square

ne2

n=3

— ———

2 _ .2 2 2 2
Ln = th + 4Fn-l - 4Fn_2 + Fn_3
Figure 14
has a side Ln - ZFn = Fn+l + Fn-l - ZFn = aFn-l - Fn = Fn-l - Fn-z = Fn-} .

Taking the overlapping areas into account gives the relation:

2 _ o2 2 2 2
(13 L, = WF + UFp y = WFp o + Fh 3 e

FOUR CORNER SQUARES AND A CENTRAL SQUARE

A square of side Fn+1 = 2F

el * Pn-Z has its sides div}ded into segments

Fn-l’ Fn-z’ Fn-l in that order (Figure 15). In each corner, a square of side

Fn-l is constructed. Then a centrally located square of side Ln_2 is

constructed, It may be wondered where the idea for doing this came from.

+ ZFn-B' it follows that such a square would

Since Ln_2 = Fn-l + Fn-3 = Fn-Z
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Faaa Pz TFpo
{
Ln-2
[9] Al
s F'n+1 -
2 2 2 2 2
Foal = #Fn-l + th-Z * Ll - th-3
Figure 15

—
'

project into the corner squares in the amount of Fn-}’ thus giving three

squares of this dimension., Taking overlap into account leads to the
formula:

2,2 2 2 2
(14) Fo = Arn_l + krn_a +1 - 4rn_3 .
CONCLUSION

In this all too brief session we have explored some of the relations of
Fibonacci numbers and geometry., It is clear that there is a field for
developing geometrical ingenuity and thereby arriving simply and intuitively
at algebraic relations involving Fibonacei numbers, Lucas numbers, and -
general Fibonacci numbers. It appears that there is a considerable wealth

of enrichment and discovery mateéial in the general area of Fibonacci
numbers as related to geometry,



