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1. INTRODUCTION

The modular group PSL(2,Z) is the group of all linear-fractional transformations z
a2+t where a,b,c,d are integers satisfying ad — bc = 1. Such transformations have matrix

cz+d?
b . a b
d] , with c d

generated by two elements z : z — =X and y : z — 21 which satisfy the relations z2 = ¢% = 1.
A natural action of PSL(2, Z) on the rational projective line Q(,/n), where n is a square-free
positive integer, produces interesting results. An effective way of viewing this action is to use
a graphical presentation known as a coset diagram.

=1. It is well-known that the group PSL(2,7)is

« . a
representations [ c

2. COSET DIAGRAMS

Let S be a group generated by the elements 1, z3,. .., and acting on a set Q. Then the
elements of {2 may be represented by the vertices of a digraph, with edge of ‘colour #’ directed
from vertex u to vertex v whenever uz; = v.

U UT; =V

The resulting diagram is a connnected graph whose vertices can be identified with the
right cosets in S of the stabiliser N of any given point of Q2. Hence an edge of colour i joins
the coset Ng to the coset Ngx;, for each g in S, and the resulting diagram is called a coset
diagram.

This is very similar to the notion of a Schreier coset graph whose vertices represent the
cosets of any given subgroup in a finitely-generated group, and also to that of a Cayley graph
whose vertices are the group elements themselves (see [1]), with trivial stabiliser.

As propounded by G. Higman, the coset diagrams defined for the actions of PSL(2, Z) are
special in a number of ways. First, they are defined for a particular group, namely PSL(2,7),
which has a presentation in terms of two generators z and y. Since there are only two genera-
tors, it is possible to avoid using colours as well as the orientation of edges associated with the
involution z. For y, which has order 3, there is a need to distinguish y from y2. The 3-cycles
of y are therefore represented by small triangles, with the convention that y permutes their
vertices counterclockwise, while the fixed points of z and y, if any, are denoted by heavy dots
(see Fig. 1).
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Figure 1

Thus the geometry of the figure makes the distinction between z-edges and y-edges obvi-
ous.

If P = {vg,e1,v1,€2,...,VUk—1,€k, vk} i an alternating sequence of vertices and edges of
a coset diagram for an action of PSL(2,Z), then 7 is a path in the diagram if e; joins v;_;
and v; for each i, and e; # e;, where i # j. By a circuit we mean a closed path of edges
and triangles. If n1,n,,...,n9; is a sequence of 2k positive integers, then by a circuit of type
(n1,n2,...,n9;), we mean the circuit in which n; triangles have one vertex outside the circuit
and ny triangles have one vertex inside the circuit and so on. Such a circuit evolves an element

of PSL(2,Z) and fixes a particular vertex of a triangle lying on the circuit. It is important to
mention here a result from [4].

Proposition 2.1: Every element of PSL(2,Z), ezcept the (group theoretic) conjugates of
z,y*! and (zy)", where n > 0 has real quadratic irrational numbers as fized points.

For the picture of a circuit as described above, consider for example the circuit of the type
(3,2,1,2,3,2) (see Fig. 2).
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Figure 2
This circuit evolves the element g = (zy)(zy~')*(zy)(zy~1)%(zy)3(zy~1)? of PSL(2, Z) which
fixes the particular vertex k¢ as shown.

If k is the number of sets of triangles on the circuit, with one vertex outside the circuit,
and &’ is the number of sets of triangles on the circuit, with one vertex inside the circuit, then
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k = k', which means that the total number of sets of triangles in a circuit is 2k. Observe that
such sets of triangles with one vertex outside inside occur alternately. At this juncture, we
take note of the following relevant result which was proved in [3].

Proposition 2.2: For given positive inlegers ni,nz, ..., N2k there does not ezxist a circuit of
the type (n1,M2, ..., N2k, M1, M2, -+ -, N2k 5« -3 1, 1025 - - ., Ni2k), where k' divides k.

3. THE ACTION OF PSL(2,Z) ON Q(v/n)

Let a € Q(+/n) be of the form (l'—"c@,n being a square-free positive integer, and the
integers a, c and 5927"@ being relatively prime. Leta = (—"i"—c@ be the algebraic conjugate

of a. For some fixed square-free positive integer n, an element o = smc@ and its algebraic
conjugate @ may have different signs. In this case we call @ an ambiguous number. If @ and @
are both negative (positive), then we call a totally negative (totally positive) number.

Now, if k is one of the three vertices of a triangle in a coset diagram representing the
action of PSL(2, Z) on real quadratic irrational number fields, then the other two vertices will
be ky and ky~!. Ii is then not hard to see that one of k, ky and ky~! will be a (totally)
positive number and the other two will be ambiguous numbers.

Let us take note of the following relevant result which was proved in [3].

Theorem 3.1:

For every real quadratic irrational number in the orbit of a under the action of PSL(2,7)
on real quadratic fields, the square-free positive integer n has the same value.

This result was then used to show (see Theorem 3 of [3]) that there is only a finite number
of ambiguous numbers and, in particular there is only a finite number of such numbers in the
orbit. It is also useful to note from [3] that in a coset diagram for the orbit of a under
PSL(2,Z), not only the ambiguous numbers form a circuit, but also this is the only circuit in
the orbit of a. ‘

Thus, if we are given a real quadratic irrational number o we can find the circuit in the
orbit of @ under PSL(2,Z). This also means that if we have two real quadratic irrational
numbers a and S, then we can test to see whether or not they belong to the same orbit. For
some values of n, there is more than one orbit containing numbers of discriminant n. For
example, the circuits associated with the elements (zy)*(zy~')3zyzy~' and (zy)Bzy~! of
PSL(2, Z) contain numbers of the same discriminant 99.

4. MATRIX REPRESENTATIONS OF ELEMENTS IN PSL(2, Z)

Consider the element ¢ € PSL(2,Z) of the form g = oyzy lzyzy~!...cyzy”! =
(zyzy~')™ = (zyzy®)™, observing that (zyzy—!)™ is the m*™ power of a commutator. Let
A(g) be the matrix (representation) of g. We shall show that A(g) is a 2 x 2 symmetric matrix
whose entries are Fibonacci numbers. A 2 X 2 symmetric matrix A, whose entries are Fibonacci

numbers, is called a Fibonacci matrix [7] if its powers satisfy the recurrence (matrix) relation
A" = A" 1 4 A"2 where n € Z. (4.1)

As we shall see shortly, the matrix A(g), however, is not a Fibonacci matrix as it does not
satisfy (4.1).
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Recalling that z:2— ==L and y:z~ 21, so that zy:z— z+1and

z

»a:y 12w 27, we have A(zy) = [(1) i] = A(y).A(x) and A(zy™!) = A(zy?) =

11
- ' - 1 0 11 11 F, 1 F2 .
— 1y — 1 — — —
B = A(zyzy™!) = A(zy~1). A(zy) = [1 1] [O 1] = [1 2] = [F2 Fa]’ where Fy, is
th o . . 2 2 3 F3 F4 3
the k** Fibonacci number. It readily follows that B* = = |, B®=
3 5 Fy, F;
5 8| |Fs Fg
8 13| |Fs Fr|
Using induction, with the help of the Fibonacci relations F,, = F,_; + Fy,—2,n > 2 and
Fy =0, F; = 1, we can easily show that B™ = [Fz’""l Fom

[1 0] = A(y?).A(z) = (A(zy))T. Hence, with B denoting the matrix A(zyzy~!), we have

Fop  Fopga
that the trace tr(B™) of B™, is tr(B™) = Fop—1 + Fom+1 = Lom, where for integers n > 0,
the Lucas numbers L,, satisfy the relations L, = L,_1 + Lp,—2,n > 2 and Ly =2,L; = 1.
The norm of B™, that is of A(g), which must be 1 by the defintions of z and y,

] ,m > 1. It is then immediate

Fom—1  Fom
Fom F. 2m+1
Fn—an-l-l - F,,% = (—1)"’ (see [7])
- We also observe that although the entries of B™ = A(g) are Fibonacci numbers, neither

is given by

= Fzm_1F2m+1 - F22m =. (_1)2m = 1, as it is well-known that

B nor any of its powers B™ are Fibonacci matrices, since B*~14+B"~2 = [F2"_3 F2"—2] +

Forn_o Fon_
_ | L2n-4 Lon-s
L2n—3 L2n—

Fon_5 Fop_
2n=5 “2n—4 . To sum up, we have proved the following result.

Fon—4 Fop_3

Theorem 4.1:
Let o be a real quadratic irrational number and let g = (zyzy~!)™ = (zyzy®)™ €
PSL(2,Z) act on a, so that the orbit of a contains a circuit of type (1,1,...,1). Then the
. —e

matriz A(g) of g is 2m

| Fom—1  Fom
O Bl RS

where Fy; is the k** Fibonacci number, with trace given by tr(A(g)) = Lam, Li bemg the kth
Lucas number.

Since we are 'dealing with circuits of coset diagrams, we may begin with zy~!, so
that we may consider the element h = (zy~'zy)™ = (zy?zy)™ (m > 1), instead
of the element ¢ = (zyzy~')™ = (zyzy®)™, (m > 1), of PSL(2,Z), and obtain
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A(zy).A(zy™?) = [1 1] [1 0] = [2 1] = [F3 Fz]. If we take A to be the ma-

0 111 1 11 F, B
. 1 1/ _|F2 R 2 _ |2 1] _|Fs F; . _
trix [1 0] (.- [Fl Fo])’ then we have A° = [1 1] = [F2 F1]’ so that induc

tively A™ = [F;,'“ FF" ] It is now a straightforward matter to verify that the matrices
n n—1

A"™(n € Z) are Fibonacci matrices. It follows that the matrix of zy~lzy is A(zy lzy) =

A(zy).A(zy™?) = [ﬁ %] = A?, so that inductively, A(h) = [F;*Z,:l Ff:,"il] = A*™

a Fibonacci matrix, having the same trace and norm as A(g). Observe that both matrices

[i ;] and [f i], that is, A(zyzy~!) and A(zy 'zy), have the same eigenvalues, given

by the roots A; and Az of A2 — 3\ + 1 = 0, where \; = ﬁg§=1+5‘—2ﬁ=1+'r:72,

and Ay = % =1+ 1;.}@ = 14 0 = o2, T being the golden-section number and o, its
(algebraic) conjugate. Since both of these matrices are 2 X 2 symmetric matrices that have
two distinct eigenvalues, using known results of linear algebra, we can conclude that they are
orthogonally diagonalizable, and hence that the eigenvalues of A(g) = (A(zyry~'))™ (and
also of A(h) = (A(zy~lzy))™ are AT = 7™ and AP = 0?™. Since it is well known that
7™ + o™ = Ly, we obtain once again the result ¢r(A(g)) = Lam = tr(A(h)).

In the form Lom = Y ey 522 (>™""), the number Ly, is known (see [6]) to be the number
of ways of selecting r objects no two of them adjacent, from 2m objects arranged circularly
or, equivalently, the number of r-subsets of the ‘circular set’ (that is, cyclically-ordered set)
{1,2,...,2m} that does not contain two consecutive integers (these subsets are also known as
the r-subsets without unit separation of the circular set {1,2,...,2m} (see [2])).

Using this known fact and a rather involved combinatorial argument while looking at the
ways the trace of the matrix,

=1 3]s ] -3 5[5 3] 4

can be computed from the product on the right side of (4.4), without having to determine the
matrix A(g) itself, we can prove the following result.

Theorem 4.2:

Let W = {1,2,...,2m} be a cyclically-ordered set of positive integers and let the orbit of
a contain a circuit of type (1,1,...,1). If P is the collection of non-empty subsets of W
Nt

2
obtained by striking out any number of adjacent pairs of elements of W, then

tr(A(g)) = 2+ |P|, (4.5)
where as usual |P| is the cardinality of P.
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We observe that |P| = Y r., Lar—1, since it can be shown by induction that Lam =
- ‘
2+ g Lor-a.

5. THE CASE WHEN (zy~'zy)™ OR (zyzy~!)™ FIXES
ELEMENTS OF THE FIELD Q(v/n)

Here, we shall require that, for all integers m > 1, the transformation h = (zy~lzy)™ =
(zy?xy)™, or g = (zyzy~)™ = (zyzy?)™, fix elements of Q(y/n). We shall show that n =5
in this case.

Let a € Q(\/ﬁ) If h is the fix a, then %—:—i‘—i‘% = a, 80 that F2m012+(F2m—1—

Fom+1)a— Fop, = 0, that is Fgm(a2 —a—1) =0, for all integers > 1, whence a = 1—:%5 This
implies that n =15, and the elements fixed by h are 7 = k‘%@ and 0 = 1—'2ﬁ = 7. On the

other hand, if g is to fix @ € Q(4/n), then %2—% = @, leads to Fop(a® +a—1) =0, for

all integers > 1, whence a = # This again implies that n = 5, and the elemeénts fixed by
garer—1=r1==1B gndo—1=¢ =B 71 = (7)1 =771,
It follows that when the elements = and y of PSL(2, Z) act on Q(+/n), under the condition

that for all integers m > 1,h = (zy~lzy)™, or g = (zyzy—1)™, fixes the elements of Q(1/n),

then n = 5 and the circuit corresponding to h or g reduces to the circuit corresponding to
1

zy~lzy or to zyzy !, and hence contains only two pairs of ambiguous numbers, namely,
=148 Y5 o= —£1‘2 S and 77! = ——ﬂC"lz 207l = —il; 5 (see Fig. 3).

T -1
AT oc-l=0
iio.-l' 7 cl=0c+1
K =7+1

' o

Figure 3.

This circuit, or its homomorphic image, has the following form (Figure 4).

Figure 4.
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From the circuit of Fig. 4, it is apparent that, instead of using the elements h and g of
PSL(2, Z) to fix elements of Q(/n) we can obtain the same end result by letting the field
automorphism s : z —+ %, and the inversion ¢ : z — 1 acting on Q(v/5). Since s? = t? = (st)?
= 1, we see that the Klein 4-group V4 acts on Q(+/5) much in the same way as the modular
group PSL(2, Z) acts on Q(+/n) through its elements h and g, with h, or g, fixing elements of
Q(+/n). In other words, for integers n1,myz,...,m, When, Ny =ng = -+ =Ny = 1, the orbit
of T under V; contains circuits of the type (1,1,...,1) each with only two pairs of ambiguous

N e’

m
numbers, namely, 7,78 = T where 7 = H‘gé and 7t =171, (1t)s =71 = (7)1 = (rs)t.

z Tt
TS + 752 +1

(zt)s = (zs)t TS

Figure 5.

By way of conclusion, let us summarize the preceding discussion in the following propo-
sition.
Proposition 5.1:

Let a € Q(v/n), and h = (zy~'zy)™ and g = (zyzy™')™ be elements of the modular
group PSL(2, Z) acting on a, so that the orbit of a contains circuits of the type (1,1,...,1).
i

2m
Ifh (org)isto fira, thena =17, 0 (ora=1"1,07"), where T = k%@ is the golden section
number and, o its algebraic conjugate, so that n = 5 and the reduced circuit in the coset -
diagram for the action of h, or g, on Q(+/5) contains only two pairs of ambiguous numbers,
namely, 7,0, and 771,071, all being fired points of the transformation(s). Moreover, this
reduced circuit is the same as the circuit of type (1,1,...,1) in the orbit of T € Q(+/5) under
N e’

m

the action of the Klein 4-group: V3 =< s,t: 82 =2 = (st)2 =1>.
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