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ABSTRACT

Fibonacci cubes were introduced in 1993 and intensively studied afterwards. This paper
adds the following theorem to these studies: Fibonacci cubes are precisely the resonance
graphs of fibonaccenes. Here fibonaccenes are graphs that appear in chemical graph theory
and resonance graphs reflect the structure of their perfect matchings. Some consequences of
the main result are also listed.

1. FIBONACCI CUBES

Fibonacci cubes were introduced in [12, 13] as a model for interconnection networks and
have been intensively studied afterwards—in [5, 16, 18, 19] several interesting properties have
been obtained. For instance, the Fibonacci cubes poses a useful recursive structure [13] (not
surprisingly closely connected to the Fibonacci numbers). In addition, one can define a related
Fibonacci semilattice [18], as well as to determine several graph parameters of these graphs,
for instance the independence number [18] and the observability [5].

Figure 1: The first four Fibonacci cubes.
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The Fibonacci cubes are for n ≥ 1 defined as follows. The vertex set of Γn is the set of
all binary strings b1b2 . . . bn containing no two consecutive ones. Two vertices are adjacent in
Γn if they differ in precisely one bit. The Fibonacci cubes Γ1, Γ2, Γ3, and Γ4 are shown on
Figure 1.

A motivation for the definition of the Fibonacci cubes comes from the well-known Zeck-
endorf’s theorem [23], cf. also [8]. The theorem asserts that every non-negative integer can be
uniquely represented as the sum of non-consecutive Fibonacci numbers. More precisely, given
an integer i, if 0 ≤ i < Fn, the following representation is unique:

i =
n−1∑
j=2

ajFj ; aj ∈ {0, 1}, ajaj+1 = 0 .

Clearly, the representations for the integers i with 0 ≤ i < Fn correspond to the vertices of
the Fibonacci cube Γn−2. Consequently, |V (Γn)| = Fn+2.

2. FIBONACCENES AND RESONANCE GRAPHS

Another graph-theoretic concept that we consider here are the so-called fibonaccenes. The
earliest reference to this family of chemicals is [1], cf. also [2, 10]. For more background on
chemical graph theory we refer to the book of Trinajstić [22].

Figure 2: Some examples of fibonaccenes with six hexagons.

A hexagonal chain G with h hexagons is a graph defined recursively as follows. If h = 1
then G is the cycle on six vertices. For h > 1 we obtain G from a hexagonal chain H with h−1
hexagons by attaching the hth hexagon along an edge e of the (h − 1)st hexagon, where the
endvertices of e are of degree 2 in the hexagonal chain H. Note that a hexagon r of a hexagonal
chain that is adjacent to two other hexagons (that is, an inner hexagon) contains two vertices of
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degree two. We say that r is angularly connected if its two vertices of degree two are adjacent.
Now, a hexagonal chain is called a fibonaccene if all of its hexagons, apart from the two terminal
ones, are angularly connected. On Figure 2 we can see three non-isomorphic fibonaccenes with
six hexagons, where the fibonaccenes (a) and (b) admit a planar representation as a subgraph
of a hexagonal (graphite) lattice, while the fibonaccene (c) possess no such representation.

A 1-factor or perfect matching of a graph G is a spanning subgraph with every vertex
having degree one. Thus a 1-factor of a graph with 2n vertices will consist of n non-touching
edges. It is well-known that a fibonaccene with n hexagons contains precisely Fn+2 1-factors
(in the chemical literature these are known as Kekulé structures); see [1] and [10, Section 5.1.2].
Fn+2 is also the number of vertices of the Fibonacci cube Γn. (For related results see [3, 7,
11, 20, 21].) In this paper we will demonstrate that a connection between the Fibonacci cubes
and the fibonaccenes is much deeper. For this sake we need to introduce another concept.

Let G be a hexagonal chain. Then the vertex set of the resonance graph R(G) of G consists
of all 1-factors of G, and two 1-factors are adjacent whenever their symmetric difference is the
edge set of a hexagon of G. On Figure 3 we can see the resonance graph of fibonaccenes from
the Figure 2.

Figure 3: The resonance graph of fibonaccenes from the Figure 2.

In fact, the concept of the resonance graph can be defined much more generally, for in-
stance, one can define the analogous concept for plane 2-connected graph [15]. The concept is
quite natural and has a chemical meaning, therefore it is not surprising that it has been inde-
pendently introduced in the chemical literature [6,9] as well as in the mathematical literature
[24].

Figure 4: The link from r to r′.
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In the next section we will also use the following terminology. Let r and r′ be adjacent
hexagons of a fibonaccene. Then the two edges of r that have exactly one vertex in r′ are
called the link from r to r′ (see Figure 4).

3. THE CONNECTION

Our main result in the following.
Theorem 1: Let G be an arbitrary fibonaccene with n hexagons. Then R(G) is isomorphic to
the Fibonacci cube Γn.

In the rest of this section we prove the theorem. Let r1, r2, . . . , rn be the hexagons of
G, where r1 and rn are the terminal hexagons. So all the other hexagons of G are angularly
connected.

We first establish a bijective correspondence between the vertices of R(G) and the vertices
of Γn. Let F(G) be the set of all 1-factors of G and define a (labeling) function

` : F(G)→ {0, 1}n

as follows. Let F be an arbitrary 1-factor of G and let e be the edge of r1 opposite to the
common edge of r1 and r2. Then for i = 1 we set

(`(F ))1 =
{

1; e ∈ F,
0; e /∈ F

while for i = 2, 3, . . . , n we define

(`(F ))i =
{

1; F contains the link from ri to ri−1,

0; otherwise .

For instance, the fibonaccene with three hexagons contains five 1-factors. On Figure 5 the
labels obtained by ` are shown.

Note first that (`(F ))1 = 1 implies (`(F ))2 = 0. Moreover, in any three consecutive
hexagons ri, ri+1, ri+2, the 1-factor F cannot have both the link from ri+2 to ri+1 and the
link from ri+1 to ri. It follows that in `(F ) we do not have two consecutive ones. In addition,
it is easy to see that for different 1-factors F and F ′, `(F ) 6= `(F ′). Since it is well-known that
G contains Fn+2 1-factors (cf. [10]), it follows that the vertices of R(G) bijectively correspond
to the vertices of Γn (via the labeling `).

For binary strings b and b′, let H(b, b′) be the Hamming distance between b and b′, that
is, the number of positions in which they differ. To conclude the proof we need to show that
for 1-factors F and F ′ of G the following holds:

F is adjacent to F ′ if and only if H(`(F ), `(F ′)) = 1 .

Suppose that F and F ′ are adjacent in R(G). If the symmetric difference of F and F ′ contains
the edges of r1, then `(F ) and `(F ′) differ in the first position and coincide in all the others.
Assume now that the symmetric difference of F and F ′ contains the edges of ri, i ≥ 2. Then
exactly one of the 1-factors F and F ′ must have a link from ri to ri−1, we may assume it is
F . Then (`(F ))i = 1 and (`(F ′))i = 0, while (`(F ))j = (`(F ′))j for j 6= i.

272



FIBONACCI CUBES ARE THE RESONANCE GRAPHS OF FIBONACCENES

Conversely, suppose that H(`(F ), `(F ′)) = 1. Then F and F ′ differ at precisely one
hexagon, say ri. Suppose i = 1. Then neither F nor F ′ contain the link from r2 to r1 which
immediately implies that the symmetric difference of F and F ′ is the edge set of r1. Since
F and F ′ coincide in all the other hexagons, they are adjacent in R(G). Assume next that
2 ≤ i ≤ n− 1. Then neither F nor F ′ contain the link from ri+1 to ri as well as the link from
ri−1 to ri. Hence the symmetric difference of F and F ′ is the edge set of ri. Finally, the case
i = n is treated analogously as the case i = 1.

Figure 5: The labelings corresponding to the fibonaccene with three hexagons.

This completes the proof.
To conclude the section we give an alternative argument that the labeling ` produces

the vertices of Γn. This is clearly true for n = 2 and n = 3. So let G be obtained from a
fibonaccene H with n− 1 hexagons r1, r2, ... , rn−1 by adding the hexagon rn to H in such a
way that rn−1 becomes angularly connected.

The 1-factors of G can be divided into F1(G) and F2(G), where F1(G) contains the 1-
factors without the link from rn to rn−1, while F2(G) contains the other 1-factors of G. Note
that each 1-factor F of H can be in a unique way extended to a 1-factor F1 of F1(G). Moreover,
`(F1) = `(F )0, where `(F )0 denotes the concatenation of the label `(F ) with the symbol 0,
see Figure 6.

Consider next a 1-factor F2 ∈ F2(G). Then there is no link from rn−1 to rn−2. Hence we
are interested only in 1-factors of H without this link. Consequently, `(F2) must have 0 in the
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last position. Similarly as above, each 1-factor of G without a link from rn−1 to rn−2 can be
in a unique way extended to a 1-factor from F2(G). The labelings of 1-factors from F2(G) are
obtained by adding 1 as the nth bit. Hence `(F2) ends with 01, cf. Figure 6. Since the above
construction is a well-known procedure for obtaining all the vertices of Γn, we conclude that
the labeling ` indeed produces all the vertices of Γn.

Figure 6: Fixed edges of 1-factors from F1(G) and F2(G) with associated labelings.

4. SOME APPLICATIONS

In this section we list several consequences of our main result that follow from the fact that
the Fibonacci cubes are median graphs. Since median graphs are closely related to hypercubes,
cf. [14, 17], we first introduce the latter class of graphs.

The vertex set of the n-cube Qn consists of all n-tuples b1b2 . . . bn with bi ∈ {0, 1}. Two
vertices are adjacent if the corresponding tuples differ in precisely one place. Qn is also called
a hypercube of dimension n. Note that Q1 = K2 and Q2 = C4.

Let G be a graph. Then a median of vertices u, v, and w is a vertex that simultaneously
lies on a shortest u, v-path, on a shortest u,w-path, and on a shortest v, w-path. A connected
graph is called a median graph if every triple of its vertices has a unique median. Standard
examples of median graphs are trees and hypercubes. For basic results about median graphs
see [14].

In [15] it is proved that the so-called catacondensed even ring systems have median res-
onance graphs. Since fibonaccenes form a (very) special subclass of catacondensed even ring
systems, their resonance graphs are median as well. Hence Theorem 1 implies:
Corollary 1: For any n ≥ 1, Γn is a median graph.

As median graphs embed isometrically into hypercubes [17], we note in passing that the
Fibonacci cubes can be isometrically embedded into hypercubes as well.

The set X of vertices of a graph G is called independent if no two vertices of X are
adjacent. The size of a largest independent set is called the independence number of G and
denoted by α(G).

Since Γn is an (isometric) subgraph of a (bipartite) hypercubeQn, its bipartition is induced
by the set of vertices En containing an even number of ones and the set of verticesOn containing
an odd number of ones. Let en = |En| and on = |On|. Chen and Zhang [4] proved that the
resonance graph of a catacondensed hexagonal graph contains a Hamilton path. In particular
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this is true for the fibonaccenes which in turn implies that any Fibonacci cube contains a
Hamilton path. As Γn is bipartite with the bipartition En +On we obtain Theorem 1 of [18]:
Corollary 2: For n ≥ 1, α(Γn) = max{en, on}.

We conclude the paper with an application concerning representations of integers using
Fibonacci numbers that might be of some independent interest. Let i1, i2, and i3 be non-
negative integers and let

i1 =
n−1∑
j=2

ajFj ; aj ∈ {0, 1}, ajaj+1 = 0 ,

i2 =
n−1∑
j=2

bjFj ; bj ∈ {0, 1}, bjbj+1 = 0 ,

and

i3 =
n−1∑
j=2

cjFj ; cj ∈ {0, 1}, cjcj+1 = 0 ,

be their Zeckendorf’s representations. Then we say that i3 is an F-intermediate integer for i1
and i2 if for any index j, the equality aj = bj implies cj = aj .

Let G be a median graph isometrically embedded into Qn. Let u, v, and w be vertices
of G that are mapped to vertices u1u2 . . . un, v1v2 . . . vn, and w1w2 . . . wn of Qn, respectively.
(Recall that vertices of Qn are n-tuples over {0, 1}.) Then it is well known (cf. the proof of
[14, Proposition 1.29]) that the median of the triple in Qn is obtained by the majority rule:
the ith coordinate of the median is equal to the element that appears at least twice among the
ui, vi, and wi. Hence, we have the following result:
Corollary 3: Let i1, i2, and i3 be arbitrary non-negative integers. Then there exists a unique
non-negative integer i such that i is

an F-intermediate integer for i1 and i2,
an F-intermediate integer for i1 and i3, and
an F-intermediate integer for i2 and i3.
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