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ABSTRACT

It was proven by Emma Lehmer that for almost all odd primes p, F5, is a Fibonacci
pseudoprime. In this paper, we generalize this result to Lucas sequences {Uy}. In particular,
we find Lucas sequences {Uj} for which either Uy, is a Lucas pseudoprime for almost all odd
primes p or U, is a Lucas pseudoprime for almost all odd primes p.

1. INTRODUCTION
It is well-known that if n is an odd prime, then
Fn—(D/n) =0 (mod p) (1)

(see [7, p.150]), where D = 5 is the discriminant of { Fj } and (D/n) denotes the Jacobi symbol.
In rare instances, there exist odd composite integers n such that n also satisfies congruence
(1). These integers are called Fibonacci pseudoprimes. The smallest Fibonacci pseudoprime
is 323 = 17 - 19. It was proved independently by Duparc [3] and E. Lehmer [9] that Fy, is a
Fibonacci pseudoprime for all primes p > 5. It was further shown by Parberry [10] that F),
is a Fibonacci pseudoprime whenever p is an odd prime and F}, is composite. Unfortunately,
it is not known whether there are infinitely many primes for which F), is composite. In this
note we will generalize the results above by finding infinite classes of Lucas sequences {Uy} for
which Uy, or U, are Lucas pseudoprimes for all but finitely many primes p. Before proceeding
further, we will need the following results and definitions.

Let U(P, Q) and V (P, Q) be Lucas sequences satisfying the second-order recursion relation

Wito = PWiy1 — QWh, (2)

where Uy = 0, Uy =1, Vo =2, Vi = P, and P and @ are integers. Associated with both
U(P,Q) and V (P, Q) is the characteristic polynomial

f(zx) =2 - Pr+Q (3)

with characteristic roots o and 3. Let D = P? — 4Q = (a — ) be the discriminant of both
U(P,Q) and V (P, Q). By the Binet formulas,

Oék—ﬂk

U, =
k Oz—ﬁ

, Vi = af + ", (4)
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Let U(P, Q) and V (P, Q) be Lucas sequences. If n is an odd prime such that (n, QD) =1,
then the following four congruences all hold (see [1, pp. 1391-1392]):

Un—(p/n) =0 (mod n). (5)

U, = (D/n) (mod n). (6)

V., = P (mod n). (7)

Vi (D/n) = 2QU=(P/m)/2 (mod n). (8)

Occasionally, positive odd composite integers satisfy at least one of the congruences (5) -
(8). This leads to the following definitions:

Definition 1: A positive odd composite integer n for which (5) holds is called a Lucas
pseudoprime with parameters P and Q.

Definition 2: A positive odd composite integer n for which (6) holds is called a Lucas
pseudoprime of the second kind with parameters P and Q.

Definition 3: A positive odd composite integer n for which (7) holds is called a Dickson
pseudoprime with parameters P and Q.

Definition 4: A positive odd composite integer n for which (8) holds is called a Dickson
pseudoprime of the second kind with parameters P and Q).

In Definitions 1 - 4, we will suppress the parameters P and ( if it is clear which Lucas
sequences are associated with the respective pseudoprimes. By [1, pp. 1391-1392], if n is a
positive integer such that (n,2PQD) = 1, then any two of congruences (5) - (8) imply the
other two.

Analogously to the definition of Frobenius pseudoprime presented in [6] and [2, pp 133-
134], we make the following definition:

Definition 5: A positive odd composite integer n is called a Frobenius pseudoprime with
parameters P and @ if (n, PQD) = 1 and n satisfies all four of the congruences (5) - (8).
Before presenting our main results, we will need to define additional types of pseudoprimes.

Definition 6: A positive odd composite integer n is called a Fermat pseudoprime to the base
a if (a,n) =1 and
a" ! =1 (mod n). 9)

Definition 7: A positive odd composite integer n is called an Fuler pseudoprime to the base
a if (a,n) =1 and
a2 = (a/n)  (mod n). (10)

Remark 1: It is clear that an Euler pseudoprime to the base a is a Fermat pseudoprime to
the base a. We further note that every positive odd composite integer is an Euler pseudoprime
to both the bases 1 and -1.

Definition 8: Let U(P, Q) and V (P, Q) be Lucas sequences. A positive odd composite integer
n is called an Fuler-Lucas pseudoprime with parameters P and @ if

U(n—(D/n))/Z =0 (mod TL) if (Q/n) =1 (11)

or

‘/(n—(D/n))/Q =0 (mod 7’1,) if (Q/n) = —1. (12)
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Definition 9: Let U(P, Q) and V (P, Q) be Lucas sequences. A positive odd composite integer
n such that (n, @D) = 1is called a strong Lucas pseudoprime with parameters P and @ if n—
(D/n) = 2%r, r odd, and

either U, =0 (mod n) or

(13)
Vat,, =0 (mod n) for some ¢, 0 <t < s.

Remark 2: It is evident that both Euler-Lucas pseudoprimes and strong Lucas pseudo-
primes with parameters P and () are Lucas pseudoprimes with parameters P and ). It
was proved in [1, p. 1397] that every strong Lucas pseudoprime with parameters P and @
is an Euler-Lucas pseudoprime with parameters P and (). It was further proved in [1, p.
1397] that if n is an Euler-Lucas pseudoprime with parameters P and @) such that either
(Q/n) =—1or n— (D/n) = 2 (mod 4), then n is a strong Lucas pseudoprime with param-
eters P and ). We further note that all of the congruences (9) - (13) are satisfied for odd
primes n (see [1, p. 1396]).

In Theorems 1 and 2 below, we find Lucas sequences U(P, Q) for which U, and U, are
Lucas pseudoprimes for all but finitely many primes p. In Theorem 3, we further find Lucas se-
quences U (P, Q) for which U, is both a strong Lucas pseudoprime and a Frobenius pseudoprime
for all but finitely many primes p. In the hypotheses of these theorems we want to ensure that
U > 0 for k > 1. It was shown in the proof of Lemma 3 of [§] thatif P =Uy; =V; >0 and D >
0, then {Ux} and {V}} are strictly increasing for k¥ > 2 and U, > 0 and Vj, > 0 for k > 1.
If P <0, then Uy < 0 and V; < 0, while if D < 0, then Uy and V), can be less than 0 — for
example,if P=1, Q =2, and D = —7, then Uz = —1 and V5 = —3. We further note that if
P =0, then Us, =0 for all £ > 1, and all composite odd integers are Lucas pseudoprimes in
this case. From this point on, we exclude the trivial case in which P = 0. Accordingly, we will
assume from here on that P > 0 and D > 0.

Theorem 1: Let U(1,Q) be a Lucas sequence such that Q < —1. Let n be an odd prime or a
Frobenius pseudoprime such that (n,QD) = 1. Further, suppose that 3 |/n if Q is odd. Then
Usy is a Lucas pseudoprime.

Proof: We first note that D = 12 —4Q > 0. Let m = Us,, = U,,V,,. Then m is composite
since U,, > 1 and V,, > 1. Moreover, if @ is odd, then Uy, is even if and only if 3 | k, while Uy,
is odd for k£ > 1 if () is even. Thus, it follows from the hypotheses that both U, and Us, are
odd.

By (6),
’ U, = (D/n) (mod n).
By (7),
' Vi, =P =1 (mod n).
Thus,
Usp, = (D/n) (mod n).
Then

n | Uz — (D/n)
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and

2 | Ugy, — (D/n).
Consequently,

2n | Ugy — (D/n).
Therefore,

m = Ugn | Um—(D/n)- (14)

To complete the proof, we need to show that (D/n) = (D/m). Note that D = 12 — 4Q =
1 (mod 4). By expanding the first expression in (4) by use of the binomial theorem (see also
[13, pp. 467-468]), we obtain

Usn = 20(1/2)%"1 = n(271)2(=Y (mod D). (15)
It now follows from (15) and the properties of the Jacobi symbol that
(D/m) = (D/Usn) = (Uza/D) = (n/D)((27")*"~V/D) = (n/D) = (D/n).

The result now follows. O

Remark 3: Parberry [10] proved that for the Fibonacci sequence U(1,—1), if n > 5 is either
a prime or a Frobenius pseudoprime, then Us, is both an Euler-Lucas pseudoprime and a
Frobenius pseudoprime if and only if n = 1 or 19 (mod 30). Thus, by virtue of Dirichlet’s
theorem on the infinitude of primes in arithmetic progressions, there are infinitely many terms
Us, which are both Euler-Lucas pseudoprimes and Frobenius pseudoprimes for the Fibonacci
sequence. On page 134 of [2] and page 22 of [5] and page 885 of [6] it is written that the
first Frobenius-Fibonacci pseudoprime is 5777 = 53 - 109. It is not true, because the first
Frobenius-Fibonacci pseudoprime is n = 4181 = 37 - 113 (see A. Rotkiewicz’s paper [15]).

Theorem 2: Let U(P,Q) be a Lucas sequence for which P > 0, Q # 0, P or Q is odd, and
D >0. Let D = D%Dl, where D1 is square free, and suppose that either P is odd or P is even
and D1 =1 (mod 4). Suppose further thatd = (P, Q) = 1 and Q is a perfect square. Let n be an
odd prime or a Lucas pseudoprime of the second kind such that (n,QD) =1, n # 3, and 3 |/n
if P=Q =1 (mod 2). Then U, is a strong Lucas pseudoprime.

Proof: We first claim that U, is odd. Note that n is odd. If P is even and @ is odd, then
Uy is odd if and only if k£ is odd. If P is odd and @ is even, then Uy is odd for all k£ > 1. If
P and @ are both odd, then Uy, is even if and only if 3 | k. Therefore, U,, is odd by hypothesis.

We now show that U, is composite. Note that d = 1 and @ is a square. It was shown
by Rotkiewicz [11] that if & > 3 is odd then Uy has two primitive prime divisors, where the
prime p is a primitive prime divisor of Uy if p|Uy but p |[/U; for 1 < [ < k. (Due to a
slightly different definition of primitive prime divisor, Rotkiewicz excluded the case Us(3,1),
but Us(3,1) =55 =511 has two primitive prime divisors according to our definition.) Thus
U,, is composite.

Let m = U,, m — (D/m) = 2°r, and m — (D/n) = 2"g, where r and g are odd. To show
that m is a strong Lucas pseudoprime, it suffices to demonstrate that U, = 0 (mod m). We
note that if P is odd, then D =1 (mod 4), and hence D; = 1 (mod 4). Then by (6),

n| U, — (D/n).
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Since n is odd,

n | (Un = (D/n))/2".

Thus,
m = Un | Un—(D /) /20

To prove that U, = 0 (mod m), it remains to show that (D/n) = (D/m), since this would
also imply that s = h. By Lemma 1 of [13],

m = U, =n(P/2)"" ! (mod D).

Noting that both n and U,, are odd and using the properties of the Jacobi symbol, we see
that
(D/m) = (D/Uy) = (Dg/U,)(D1/Usy)
= (D1/Uy) = (Un/Dn)
= (n/D1)((P/2)""!/D1) = (n/Dy)
= (D1/n) = (DgD1/n) = (D/n).

The result now follows. O
If we restrict the hypotheses of Theorem 2, we obtain the following stronger result.

Theorem 3: Let U(P,1) be a Lucas sequence for which P > 3. Let D = D3D;, where Dy is
square free and suppose that either P is odd or P is even and D1 =1 (mod 4). Let n > 3 be a
prime or a Lucas pseudoprime of the second kind such that (n, PD) =1 and 3 |/n if P is odd.
Then U, is both a strong Lucas pseudoprime and a Frobenius pseudoprime.

Proof: Note that D > 0, since P > 3. It now follows from Theorem 2 that U, is a
strong Lucas pseudoprime, and hence an Euler-Lucas pseudoprime. It was shown in Theorem
1 of [14] that if m is an Euler-Lucas pseudoprime with parameters P and @ and m is an Euler
pseudoprime to the base @), then m is a Frobenius pseudoprime with parameters P and @ .
Since @@ = 1, U, is clearly an Euler pseudoprime to the base ). Thus, U, is also a Frobenius
pseudoprime with parameters P and 1. O

For the Fibonacci sequence we know that there are infinitely many Frobenius pseudoprimes
n with (2) =1 (see Parberry [10] and Rotkiewicz [15]).

C. Pomerance put forward (in a letter to A. Rotkiewicz) the following problem: Given
integers P, Q with D = P? — 4(Q) not a square, do there exist infinitely many, or at least one,
Lucas Pseudoprimes n with parameters P and @ satisfying (%) = —17 (see also [4] p. 316).

An affirmative answer to this question in the strong sense (infinitely many) is contained
in the following theorem of A. Rotkiewicz and A. Schinzel [16].

Given integer P,Q with D = P2 —4Q # 0, -Q, —2Q, —3Q, and € = %1, every arithmetic

progression ax + b, where (a,b) = 1, which contains an odd integer ng with (%) = € contains

infinitely many strong Lucas pseudoprimes n with parameters P and () such that (%) = e
The number N (X) of such strong pseudoprimes not exceeding X satisfies

log X

N(X) > C(RQ,@J%E)W
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where ¢(P, @, a, b, €) is a positive constant depending on P, Q, a, b, €.
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