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ABSTRACT

It was proven by Emma Lehmer that for almost all odd primes p, F2p is a Fibonacci
pseudoprime. In this paper, we generalize this result to Lucas sequences {Uk}. In particular,
we find Lucas sequences {Uk} for which either U2p is a Lucas pseudoprime for almost all odd
primes p or Up is a Lucas pseudoprime for almost all odd primes p.

1. INTRODUCTION

It is well-known that if n is an odd prime, then

Fn−(D/n) ≡ 0 (mod p) (1)

(see [7, p.150]), where D = 5 is the discriminant of {Fk} and (D/n) denotes the Jacobi symbol.
In rare instances, there exist odd composite integers n such that n also satisfies congruence
(1). These integers are called Fibonacci pseudoprimes. The smallest Fibonacci pseudoprime
is 323 = 17 · 19. It was proved independently by Duparc [3] and E. Lehmer [9] that F2p is a
Fibonacci pseudoprime for all primes p > 5. It was further shown by Parberry [10] that Fp

is a Fibonacci pseudoprime whenever p is an odd prime and Fp is composite. Unfortunately,
it is not known whether there are infinitely many primes for which Fp is composite. In this
note we will generalize the results above by finding infinite classes of Lucas sequences {Uk} for
which U2p or Up are Lucas pseudoprimes for all but finitely many primes p. Before proceeding
further, we will need the following results and definitions.

Let U(P,Q) and V (P,Q) be Lucas sequences satisfying the second-order recursion relation

Wk+2 = PWk+1 −QWk, (2)

where U0 = 0, U1 = 1, V0 = 2, V1 = P, and P and Q are integers. Associated with both
U(P,Q) and V (P,Q) is the characteristic polynomial

f(x) = x2 − Px + Q (3)

with characteristic roots α and β. Let D = P 2 − 4Q = (α − β)2 be the discriminant of both
U(P,Q) and V (P,Q). By the Binet formulas,

Uk =
αk − βk

α− β
, Vk = αk + βk. (4)
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Let U(P,Q) and V (P,Q) be Lucas sequences. If n is an odd prime such that (n, QD) = 1,
then the following four congruences all hold (see [1, pp. 1391-1392]):

Un−(D/n) ≡ 0 (mod n). (5)

Un ≡ (D/n) (mod n). (6)

Vn ≡ P (mod n). (7)

Vn−(D/n) ≡ 2Q(1−(D/n))/2 (mod n). (8)

Occasionally, positive odd composite integers satisfy at least one of the congruences (5) -
(8). This leads to the following definitions:
Definition 1: A positive odd composite integer n for which (5) holds is called a Lucas
pseudoprime with parameters P and Q.
Definition 2: A positive odd composite integer n for which (6) holds is called a Lucas
pseudoprime of the second kind with parameters P and Q.
Definition 3: A positive odd composite integer n for which (7) holds is called a Dickson
pseudoprime with parameters P and Q.
Definition 4: A positive odd composite integer n for which (8) holds is called a Dickson
pseudoprime of the second kind with parameters P and Q.

In Definitions 1 - 4, we will suppress the parameters P and Q if it is clear which Lucas
sequences are associated with the respective pseudoprimes. By [1, pp. 1391-1392], if n is a
positive integer such that (n, 2PQD) = 1, then any two of congruences (5) - (8) imply the
other two.

Analogously to the definition of Frobenius pseudoprime presented in [6] and [2, pp 133-
134], we make the following definition:
Definition 5: A positive odd composite integer n is called a Frobenius pseudoprime with
parameters P and Q if (n, PQD) = 1 and n satisfies all four of the congruences (5) - (8).

Before presenting our main results, we will need to define additional types of pseudoprimes.
Definition 6: A positive odd composite integer n is called a Fermat pseudoprime to the base
a if (a, n) = 1 and

an−1 ≡ 1 (mod n). (9)

Definition 7: A positive odd composite integer n is called an Euler pseudoprime to the base
a if (a, n) = 1 and

a(n−1)/2 ≡ (a/n) (mod n). (10)

Remark 1: It is clear that an Euler pseudoprime to the base a is a Fermat pseudoprime to
the base a. We further note that every positive odd composite integer is an Euler pseudoprime
to both the bases 1 and -1.
Definition 8: Let U(P,Q) and V (P,Q) be Lucas sequences. A positive odd composite integer
n is called an Euler-Lucas pseudoprime with parameters P and Q if

U(n−(D/n))/2 ≡ 0 (mod n) if (Q/n) = 1 (11)

or
V(n−(D/n))/2 ≡ 0 (mod n) if (Q/n) = −1. (12)
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Definition 9: Let U(P,Q) and V (P,Q) be Lucas sequences. A positive odd composite integer
n such that (n, QD) = 1 is called a strong Lucas pseudoprime with parameters P and Q if n−
(D/n) = 2sr, r odd, and

either Ur ≡ 0 (mod n) or
V2tr ≡ 0 (mod n) for some t, 0 ≤ t < s.

(13)

Remark 2: It is evident that both Euler-Lucas pseudoprimes and strong Lucas pseudo-
primes with parameters P and Q are Lucas pseudoprimes with parameters P and Q. It
was proved in [1, p. 1397] that every strong Lucas pseudoprime with parameters P and Q
is an Euler-Lucas pseudoprime with parameters P and Q. It was further proved in [1, p.
1397] that if n is an Euler-Lucas pseudoprime with parameters P and Q such that either
(Q/n) = −1 or n − (D/n) ≡ 2 (mod 4), then n is a strong Lucas pseudoprime with param-
eters P and Q. We further note that all of the congruences (9) - (13) are satisfied for odd
primes n (see [1, p. 1396]).

In Theorems 1 and 2 below, we find Lucas sequences U(P,Q) for which U2p and Up are
Lucas pseudoprimes for all but finitely many primes p. In Theorem 3, we further find Lucas se-
quences U(P,Q) for which Up is both a strong Lucas pseudoprime and a Frobenius pseudoprime
for all but finitely many primes p. In the hypotheses of these theorems we want to ensure that
Uk > 0 for k ≥ 1. It was shown in the proof of Lemma 3 of [8] that if P = U2 = V1 > 0 and D >
0, then {Uk} and {Vk} are strictly increasing for k ≥ 2 and Uk > 0 and Vk > 0 for k ≥ 1.
If P < 0, then U2 < 0 and V1 < 0, while if D < 0, then Uk and Vk can be less than 0 – for
example, if P = 1, Q = 2, and D = −7, then U3 = −1 and V2 = −3. We further note that if
P = 0, then U2k = 0 for all k ≥ 1, and all composite odd integers are Lucas pseudoprimes in
this case. From this point on, we exclude the trivial case in which P = 0. Accordingly, we will
assume from here on that P > 0 and D > 0.
Theorem 1: Let U(1, Q) be a Lucas sequence such that Q ≤ −1. Let n be an odd prime or a
Frobenius pseudoprime such that (n, QD) = 1. Further, suppose that 3 6| n if Q is odd. Then
U2n is a Lucas pseudoprime.

Proof: We first note that D = 12 − 4Q > 0. Let m = U2n = UnVn. Then m is composite
since Un > 1 and Vn > 1. Moreover, if Q is odd, then Uk is even if and only if 3 | k, while Uk

is odd for k ≥ 1 if Q is even. Thus, it follows from the hypotheses that both Un and U2n are
odd.

By (6),
Un ≡ (D/n) (mod n).

By (7),
Vn ≡ P ≡ 1 (mod n).

Thus,
U2n ≡ (D/n) (mod n).

Then
n | U2n − (D/n)
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and
2 | U2n − (D/n).

Consequently,
2n | U2n − (D/n).

Therefore,
m = U2n | Um−(D/n). (14)

To complete the proof, we need to show that (D/n) = (D/m). Note that D = 12 − 4Q ≡
1 (mod 4). By expanding the first expression in (4) by use of the binomial theorem (see also
[13, pp. 467-468]), we obtain

U2n ≡ 2n(1/2)2n−1 ≡ n(2−1)2(n−1) (mod D). (15)

It now follows from (15) and the properties of the Jacobi symbol that

(D/m) = (D/U2n) = (U2n/D) = (n/D)((2−1)2(n−1)/D) = (n/D) = (D/n).

The result now follows.
Remark 3: Parberry [10] proved that for the Fibonacci sequence U(1,−1), if n > 5 is either
a prime or a Frobenius pseudoprime, then U2n is both an Euler-Lucas pseudoprime and a
Frobenius pseudoprime if and only if n ≡ 1 or 19 (mod 30). Thus, by virtue of Dirichlet’s
theorem on the infinitude of primes in arithmetic progressions, there are infinitely many terms
U2n which are both Euler-Lucas pseudoprimes and Frobenius pseudoprimes for the Fibonacci
sequence. On page 134 of [2] and page 22 of [5] and page 885 of [6] it is written that the
first Frobenius-Fibonacci pseudoprime is 5777 = 53 · 109. It is not true, because the first
Frobenius-Fibonacci pseudoprime is n = 4181 = 37 · 113 (see A. Rotkiewicz’s paper [15]).
Theorem 2: Let U(P,Q) be a Lucas sequence for which P > 0, Q 6= 0, P or Q is odd, and
D > 0. Let D = D2

0D1, where D1 is square free, and suppose that either P is odd or P is even
and D1 ≡ 1 (mod 4). Suppose further that d = (P,Q) = 1 and Q is a perfect square. Let n be an
odd prime or a Lucas pseudoprime of the second kind such that (n, QD) = 1, n 6= 3, and 3 6| n
if P ≡ Q ≡ 1 (mod 2). Then Un is a strong Lucas pseudoprime.

Proof: We first claim that Un is odd. Note that n is odd. If P is even and Q is odd, then
Uk is odd if and only if k is odd. If P is odd and Q is even, then Uk is odd for all k ≥ 1. If
P and Q are both odd, then Uk is even if and only if 3 | k. Therefore, Un is odd by hypothesis.

We now show that Un is composite. Note that d = 1 and Q is a square. It was shown
by Rotkiewicz [11] that if k > 3 is odd then Uk has two primitive prime divisors, where the
prime p is a primitive prime divisor of Uk if p|Uk but p 6| Ul for 1 ≤ l < k. (Due to a
slightly different definition of primitive prime divisor, Rotkiewicz excluded the case U5(3, 1),
but U5(3, 1) = 55 = 5 · 11 has two primitive prime divisors according to our definition.) Thus
Un is composite.

Let m = Un, m− (D/m) = 2sr, and m− (D/n) = 2hg, where r and g are odd. To show
that m is a strong Lucas pseudoprime, it suffices to demonstrate that Ur ≡ 0 (mod m). We
note that if P is odd, then D ≡ 1 (mod 4), and hence D1 ≡ 1 (mod 4). Then by (6),

n | Un − (D/n).
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Since n is odd,
n | (Un − (D/n))/2h.

Thus,
m = Un | U(m−(D/n))/2h .

To prove that Ur ≡ 0 (mod m), it remains to show that (D/n) = (D/m), since this would
also imply that s = h. By Lemma 1 of [13],

m = Un ≡ n(P/2)n−1 (mod D1).

Noting that both n and Un are odd and using the properties of the Jacobi symbol, we see
that

(D/m) = (D/Un) = (D2
0/Un)(D1/Un)

= (D1/Un) = (Un/D1)
= (n/D1)((P/2)n−1/D1) = (n/D1)
= (D1/n) = (D2

0D1/n) = (D/n).

The result now follows.
If we restrict the hypotheses of Theorem 2, we obtain the following stronger result.

Theorem 3: Let U(P, 1) be a Lucas sequence for which P ≥ 3. Let D = D2
0D1, where D1 is

square free and suppose that either P is odd or P is even and D1 ≡ 1 (mod 4). Let n > 3 be a
prime or a Lucas pseudoprime of the second kind such that (n, PD) = 1 and 3 6| n if P is odd.
Then Un is both a strong Lucas pseudoprime and a Frobenius pseudoprime.

Proof: Note that D > 0, since P ≥ 3. It now follows from Theorem 2 that Un is a
strong Lucas pseudoprime, and hence an Euler-Lucas pseudoprime. It was shown in Theorem
1 of [14] that if m is an Euler-Lucas pseudoprime with parameters P and Q and m is an Euler
pseudoprime to the base Q, then m is a Frobenius pseudoprime with parameters P and Q .
Since Q = 1, Un is clearly an Euler pseudoprime to the base Q. Thus, Un is also a Frobenius
pseudoprime with parameters P and 1.

For the Fibonacci sequence we know that there are infinitely many Frobenius pseudoprimes
n with

(
5
n

)
= 1 (see Parberry [10] and Rotkiewicz [15]).

C. Pomerance put forward (in a letter to A. Rotkiewicz) the following problem: Given
integers P,Q with D = P 2 − 4Q not a square, do there exist infinitely many, or at least one,
Lucas Pseudoprimes n with parameters P and Q satisfying

(
D
n

)
= −1? (see also [4] p. 316).

An affirmative answer to this question in the strong sense (infinitely many) is contained
in the following theorem of A. Rotkiewicz and A. Schinzel [16].

Given integer P,Q with D = P 2 − 4Q 6= 0,−Q,−2Q,−3Q, and ε = ±1, every arithmetic

progression ax + b, where (a, b) = 1, which contains an odd integer n0 with
(

D
n0

)
= ε contains

infinitely many strong Lucas pseudoprimes n with parameters P and Q such that
(

D
n

)
= ε.

The number N(X) of such strong pseudoprimes not exceeding X satisfies

N(X) > c(P,Q, a, b, ε)
log X

log log X
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where c(P,Q, a, b, ε) is a positive constant depending on P,Q, a, b, ε.
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