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ABSTRACT

Let k,m € Z, m > 2,0 < k < 2™ and 2 |[/k. In the paper we give a general primality
criterion for numbers of the form k-2 +1, which can be viewed as a generalization of the Lucas-
Lehmer test for Mersenne primes. In particular, for k£ = 3,9 we obtain explicit primality tests,
which are simpler than current known results. We also give a new primality test for Fermat
numbers and criteria for 9-24"+3 £ 1, 3.2207+6 + 1 or 3.2367+6 4 1 to be twin primes.

1. INTRODUCTION

For nonnegative integers n, the numbers F,, = 22" + 1 are called the Fermat numbers.
In 1878 Pepin showed that F,,(n > 1) is prime if and only if 3/»~1/2 = —1 (mod F,,). For
primes p, let M), = 2P —1. The famous Lucas-Lehmer test states that M, is a Mersenne prime
if and only if M, | S,_2, where {S,,} is given by Sy =4 and Sy41 = SZ —2 (k=0,1,2,...).

In [1], [2], [6] and [9], W. Borho, W. Bosma, H. Riesel and H.C. Williams extended the
above two tests to numbers of the form k- 2™ £ 1, where 0 < k£ < 2™ and k is odd. For
example, we have the following known results.

Theorem 1.1: Let p=£k-2"+1 with m>2, 0<k<2™, 2|/k and D € Z with the
Jacobi symbol <%) = —1. Then p is prime if and only if D®~1/2 = _1 (mod p). In
particular, if 3 |/k we may take D = 3.

Let {S,(x)} be given by So(z) = x and Sy 1(x) = (Sk(z))? — 2 (k > 0). Then we have
Theorem 1.2: Let p = k-2™ — 1 with m >3, 0 < k < 2" and k = +1 (mod 6), and let
= (2+3)F 4+ (2 —v/3)*. Then p is prime if and only if p | S,,_2(z).

Here we point out that the z in Theorem 1.2 is also given by x = ank:_ol)/ 2 kf -
(k—’f’) (_1)r4k—2r‘

T
In this paper we prove the following main result

(L.L1) Form > 2 let p=~Fk-2"™+£1 with 0 < k < 2™ and k odd. If b is an integer such
that (%}’) = (QTTb) = —1, then p is prime if and only if p| Sm_g(ank:_ol)/z 2
(_1)rbk—2r).

As applications of (1.1) we have many new simple primality criteria for numbers of the

form k- 2™ + 1(k = 1,3,9). Here are some typical results.
(1.2) For n > 1 the Fermat number F,, is prime if and only if F}, | San_2(5).
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(1.3) Let m > 3 be a positive integer. If m = 0 (mod 2) or m = 5,11 (mod 12), then
9.2™ — 1 is composite. If m = 1,3,7,9 (mod 12), then 9 - 2™ — 1 is prime if and only if
9.-2"™ — 11 S,,—2(x), where

5778 iftm=1,9 (mod 12),
x =< 1330670 if m =3 (mod 12),
2186871698 if m =7 (mod 12).
(1.4) Let n be a nonnegative integer. Then 9-24"+3 — 1 and 9-2%"+3 4 1 are twin primes
if and only if (9-247%3)2 — 1| S4,41(32672 - 1067459581).

Throughout this paper we use the following notations: Z—the set of integers, N—the set
of positive integers, (%)—the Jacobi symbol, (m,n)—the greatest common divisor of m and

n, Sp(x)— the sequence defined by So(z) = z and Syi1(z) = (Sk(2))? — 2(k > 0).
2. BASIC LEMMAS
For P,Q € 7 the Lucas sequences {U,(P,Q)} and {V,(P,Q)} are defined by
Uo(P,Q) =0, Ui(P,Q) = 1, Un+1(P,Q) = PU(P.Q) — QUn1(P.Q) (n 2 1)
and
VW(P,Q) =2, Vi(P,Q) =P, Vo1 (P, Q) = PVo(P,Q) — QVh1 (P, Q) (n > 1).

Let D = P?2 — 4Q. It is well known that

ur@) = 75 (F) - (F5) Y #o o)
and
@) = (T (F0R) 22
Set U, = U, (P, Q) and V,, = V,,(P, Q). From the above one can easily check that
V., = PU, —2QU,,_1 = 2U,,+1 — PU,,. (2.3)
JFrom [5] we also have
Upn = Up Vi, Vo, = V2 -2Q" and V? — DU? = 4Q". (2.4)
If p is an odd prime not dividing @, it is well known that ([5])
Up_(2y(P,Q) =0 (modp) and Uy(P,Q)= <2) (mod p). (2.5)
P p
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Let p be an odd prime such that <%> =1 and p |/D. D. H. Lehmer proved the following

stronger congruence (see [4] or [9, p.85]):

U(pf(%))/2(P’ Q)=0 (mod p). (2.6)

Definition 2.1: Let P,Q € Z, and p be an odd prime such that p [/Q. Define r,(P, Q) to be
the smallest positive integer n such that p | U, (P, Q).

JFrom [5, IV.17] or [9, p.87] we know that p | Uy, (P, Q) if and only if r,(P, Q) | m. This
can also be deduced from [9, (4.2.59), p.81]. Using (2.5) and (2.6) we have

Lemma 2.1: Let P and Q be integers, D = P2 —4Q, and let p be an odd prime such that

(2
p /Q. Then r,(P,Q) | p— (%) . Moreover, if (%) =1 and p |/D, then r,(P,Q) | p(T”).
JFrom (2.4) and induction we have

Lemma 2.2: Let P,Q € Z, Q # 0 and n € N. Then Sn(%) =Q Van (P, Q).

Lemma 2.3: Let P,Q € Z and n € N. Let p be an odd prime such that p [/Q(P? — 4Q) and
Sn(P/+/Q) =0 (mod p). Then p = (@) (mod 2”+(3+(%>)/2).

Proof: In view of Lemma 2.2 we have p | Van (P, Q) and so p | Usn+1 (P, @) by (2.4). From
(2.4) we see that p |/Uan (P, Q). Thus, r,(P,Q) = 2"!. This together with Lemma 2.1 gives
the result.

Lemma 2.4: Let P,Q € Z and n € N, and let p > 1 be an odd integer such that (p, Q(P? —
4Q)) =1 and S,(P/v/Q) =0 (mod p). Let « =n+2 or n+ 1 according as Q is a square or
not. If p < (2% — 1)2, then p is prime.

727171

Proof: If p is composite, then p has a prime divisor ¢ such that ¢ < ,/p. Since ¢ |p
and S, (P/v/Q) =0 (mod p) we see that S,(P/v/Q)=0 (mod ¢). It follows from Lemma

2.3 that ¢= (132;—46’2) (mod 2"+(3+(%))/2) and so ¢q > ontB+H(EN/2 _q, Thus, p > ¢* >

Q
(2"+(3+(?))/2 — 1)2. This contradicts the assumption. So p must be prime.
Let [x] denote the greatest integer not exceeding z. Using induction one can easily prove

Lemma 2.5 ([9, (4.2.36)]): Let P,Q € Z and n € N. Then

Vi(P,Q) =

[n/2]
n (n —r
r=0

)P“’"(—Q)T.

n—r r

3. THE GENERAL PRIMALITY TEST FOR NUMBERS
OF THE FORM £ -2™ +1

Lemma 3.1: Let P,Q € Z and D = P? — 4Q. Let p be an odd prime such that p |/QD.
Suppose (%) =1 and so ¢ = Q (mod p) for some integer c. Then
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(i) fo(zg) (P.Q)=2 (P ; 20) cl_(j) (mod p),

@)V (R@)=p (1) (z)

2

Proof: For b,c € Z it is clear that

2
<b:|:\/b2—4bc> _, bo2ex /207 e
2 o 2 '

Thus, applying (2.2) we see that
Van(b,be) = "V, (b — 2¢,c?). (3.1)

Hence, if p is an odd prime such that p |/b?> — 4bc and ¢ = (%), by [9, (4.3.4)] we obtain

Ve (b—2¢,¢%) = b~ "= V,_.(bbc) = b~ "7 -2(60)1%5 =TT =2 (é) T (mod p).
2 p

Now suppose b= P+2c and ¢ =Q (mod p). Then b? —4bc = P? —4c? = P2 —4Q
(mod p) and so € = (%). From the above we see that
P+ 2c
p

V¥(P, Q) = Vp_;s(b —2¢,c*) =2 ( ) oz (mod p).
This proves (i).
JFrom (2.1) and (2.2) we see that

D
Vipt(2))2(P Q) = W{PV@_(%W(P’ Q)+ (;) DUy (2),2(P.Q) .

Thus, by (i) and (2.6) we obtain

1 P+2c\ (%) P+2c\ ()
V(p+(%))/2(Pa Q) = W 2P ( ) ¢cT 2 =P ( C) ¢ 2 (mod p).

This proves (ii) and hence the proof is complete.

Remark 3.1: Lemma 3.1 can also be easily deduced from [7, Lemma 3.4] or [8, Lemma 3.1].
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Lemma 3.2: Let P,Q € Z and p be an odd prime with p [/Q(P? — 4Q). Suppose (%) =1 and

so ¢ = Q (mod p) for some integer c. Then

p

Vpi(—_l) (P,Q)=0 (mod p) if and only if (262%@) = (

4

M) _

Proof: From Lemma 3.1 we have

pioe) (5 a0 p?
VP—(%)(P,Q)E 2<%>C 2 ) (mod p) 1f( Q )ZL

: P(222) ") (o) it (1252) — 1.

Thus, applying (2.4) we obtain

Vo ><P’Q>:Vp—<-—l><PvQ>+2Qp(4; | EVP-<-—1><P,Q>+2C@<

=1
P

4 2 2

2cﬁ {(%) + (i)} (mod p) if <4Q;P2> =1,
c_ﬁ{P (%) + 2c <§> } (mod p) if (#)

Since p |/P? — 4Q and ¢? = Q (mod p) we see that P(%) # —2c(3) (mod p). Hence,

PV, (=2)(PQ) = (#) =1 and (PZQC) :_(]%)

4
2 P 2Q) — cP
p p
This proves the lemma.

Lemma 3.3: Suppose P,Q,k,n € Z with k,n > 0. Then

—1.

an(P7 Q) = Vn(vk(Pa Q)’Qk)
Proof: Set V,, = V,,(P,Q). From [9, (4.2.8)] we know that
Ve = ViVe = Q"o and so Vimin) = ViVim — Q" Vigm—1)-

Now we prove the result by induction on n. Clearly the result is true for n = 0,1. Suppose
the result holds for 1 < n < m. By the above and the inductive hypothesis we have

Viima1) = ViVin (Vie, Q%) = Q" Vi1 (Vie, Q%) = Vi1 (Vie, Q).
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So the result holds for n = m + 1. Hence, the lemma is proved by induction.
Theorem 3.1: For m € {2,3,4,...} let p=k-2"+1 with 0 < k < 2™ and k odd. If
b,ceZ, (p,c)=1 and (2%1’) = (QCTTI’) = —(g), then p is prime if and only if p | Spm—2(x),

where © = ¢ FVj (b, c?) = Zg:ol)ﬂ 2 (P (= 1) (b )R

k—r\ r
Proof: Set U, = U,(b,c?) and V,, = V,,(b,c?). From Lemmas 3.3, 2.2 and 2.5 we have
‘/(p_(—Tl))/4 = Vipgm—2 = Vom—2(Vj, ¢2F) = ck'2M725m,2(Vk/ck) = ck'QMﬁSm,g(x).

If p is prime, it follows from Lemma 3.2 that p | V(p_(%l))M. So Sp—2(z) =0 (mod p).

Now suppose Sy, 2(z) = Spm_2(Vi/c*) = 0 (mod p). From (2.4) we have V2 — (b* —
4¢2)U2 = 4c*™. Thus, (U,, Vi) | 4¢®™. As (p,2¢) =1 and p | Vi.om—2 we find (p, Up.gm—2) = 1.
It is well known that (see [5] and [9]) U, | U,y for any positive integers r and n. Thus,
U | Ug.gm—2 and so (p,Uy) = 1. Hence, (p,V;2 — 4c*) = 1 by (2.4). Set P = V},Q = **
andn=m—2. If 0 < k < 2™ — 2, then clearly p = k-2™ £ 1 < (2™ — 1)2. By Lemma
2.4, p is prime. If p = (2" — 1)2™ £ 1 is composite, by Lemma 2.3 we know that any prime
divisor q of p satisfying ¢ = £1 (mod 2™). It is easy to check that p # (2™ + 1)2. Thus
p > (2™ —1)(2™ 4 1). This is impossible. So p is prime. This completes the proof.

Taking b = 4 and ¢ = 1 in Theorem 3.1 we obtain the Lucas-Lehmer test for Mersenne
primes and Theorem 1.2.

From Theorem 3.1 we also have the following criterion for Fermat primes, which is similar
to the Lucas-Lehmer test.

Corollary 3.1: For n € N the Fermat number F,, is prime if and only if F,, | San_2(5).
Proof: Since F,, =2 (mod 3) and F;, = 3,5 (mod 7) we see that

() (5)- w (3)-(3)-

Thus putting p = F,, k=1, b=>5 and ¢ =1 in Theorem 3.1 we obtain the result.

Remark 3.2: In 1960 K. Inkeri[3] showed that the Fermat number F,, (n > 2) is prime if and
Only if Fn ‘ Sgnfg(g).

4. THE PRIMALITY CRITERION FOR NUMBERS OF THE FORM 92" +1

In the section we use Theorem 3.1 to obtain explicit primality criterion for numbers of
the form 9 - 2™ 4+ 1.

Theorem 4.1: Let m > 3 be a positive integer. If m = 0 (mod 2) or m = 5,11 (mod 12),
then 9-2™ — 1 is composite. If m =1,3,7,9 (mod 12), then 9-2™ — 1 is prime if and only if
9.-2"™ — 1| S;—2(x), where

5778 iftm=1,9 (mod 12),
x =< 1330670 if m =3 (mod 12),
2186871698 if m =7 (mod 12).

126



PRIMALITY TESTS FOR NUMBERS OF THE FORM k - 2™ + 1

Proof: Clearly the result is true for m = 3. Now assume m > 4. If m = 2n for some
integer n, then 9-2™ —1=(3-2"+1)(3-2" —1) and so 9-2™ — 1 is composite. If m = 5,11
(mod 12), then 7] 9-2™ — 1 since 2> =1 (mod 7). If m =1,3,7,9 (mod 12), once setting

3 ifm=1,9 (mod 12),
b=<¢ 5 ifm=3 (mod12),
11 ifm=7 (mod 12)

_24b N\ _(_2-b -1
9.2m—1) \9.9m_1) 7

From Lemma 2.5 we know that

one can easily check that

Vo(b,1) = b” — 9b" + 27b° — 300> + 9b = (b — 3b)((b* — 3b)* — 3) = =.

Applying Theorem 3.1 in the case ¢ = 1 we get the result.
In a similar way, applying Theorem 3.1 we have

Theorem 4.2: Let m > 3 be a positive integer. If m = 0 (mod 4), then 5| 9-2™ 4+ 1. If
m = 10 (mod 12), then 13 | 9-2™ 4+ 1. If m =5 (mod 8), then 17 |9-2™ + 1. Ifm # 0
(mod 4), m # 10 (mod 12) and m # 5 (mod 8), then 9 - 2™ + 1 is prime if and only if
9-2m + 1| S,—2(x), where x is given by Table 4.1.

m b |x=Vy(b1) = (b>—3b)((b> — 3b)% — 3)
m=1,9 (mod 24) 37 50542 - 2554493761
m =2 (mod 12) 28 21868 - 478209421
m=3,6,7 (mod 12) | 12 1692 - 2862861
m =11 (mod 12) 32 32672 - 1067459581
m = 17,65 (mod 72) | 150 3374550 - (33745502 — 3)
m =41 (mod 72) 2167 | (2167° — 6501) - ((2167° — 6501)% — 3)

Table 4.1

Remark 4.1: Form >4 let p=9-2" + 1 and

5 if m=0,2,3 (mod 4),

7 ifm=1,9,13,21 (mod 24),
17 if m =5 (mod 24),

241 if m =17 (mod 24).

D =

In [2] W. Bosma showed that p is prime if and only if D®~1/2 = —1 (mod p).
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Theorem 4.3: Let n be a positive integer. Then 9-24"3 —1 and 9-24"+3 41 are twin primes
if and only if (9247 3)2 — 1| Sy,41(32672 - 1067459581).

Proof: Let b=32. Then 2+b=2-17 and 2—b=~2-3-5. Since (gzuissy) =

<m> =1and 2* = —1 (mod 17) we find

245 B 17 (9283 1\ A(-1D)m 1 .
9.24n+3 + 1) \9.24n+3 1) 17 - 17 Y

2-b - 9.24n+3 41 7241
= —+ (=) =+ = 1.
9. 24n+3 11 9. 24n+3 11 5 5

Thus, applying Theorem 3.1 we see that 9 - 24"+3 4 1 is prime if and only if 9 - 2473 + 1 |
Sint1(Vo(b,1)). To see the result, we note that (92473 +1,9.24"+3 — 1) =1 and that

Vo(b,1) = b7 — 907 4 27b° — 300> + 9b = (b® — 3b)((b® — 3b)* — 3) = 32672 - 1067459581.

Remark 4.2: If 9-2™ +1(m > 1) are twin primes, then m = 3 (mod 4). If m = 11 (mod 12),
then 7] 9-2™ —1 and so 9-2™ £ 1 cannot be twin primes. If m = 3 (mod 12), by taking
b =12 and ¢ =1 in Theorem 3.1 we can prove that 9-2™ — 1 and 9-2™ + 1 are twin primes
if and only if (9-2™)% — 1| S,,_2(4843960812). It is known that 9-2™ — 1 and 9 - 2™ + 1 are
twin primes when m = 1,3,7,43,63,211. Do there exist only finitely many such twin primes?

5. THE PRIMALITY CRITERION FOR NUMBERS OF THE FORM 3-2™ £1

Theorem 5.1: Let m > 3 be a positive integer such that m # —2 (mod 10080). If m =1
(mod 4), m = 46 (mod 72) or m = 862 (mod 1440), then 3 -2™ — 1 is composite. If m # 1
(mod 4), m # 46 (mod 72) and m # 862 (mod 1440), then 3 -2™ — 1 is prime if and only if
3-2™ —1|8y—2(x), where x is given by Table 5.1.

m b |x=V3(b1)=0%-3b
m = 0,3 (mod 4) 3 18
m = 2,6 (mod 12) 5 110
m = 10p (mod 24) 15 3330
m =22 (mod 72) 17 4862
m =70 (mod 144) 192 7077312
m = 142 (mod 288) 65535 655353 — 3 - 65535
m = 286,574 (mod 1440) 9 702
m = 1150 (mod 1440) 29 24302
m = 1438, 2878, 4318, 7198 (mod 10080) 27 19602
m = 5758 (mod 10080) i1 68798
m = 8638 (mod 10080) 125 1952750

Table 5.1
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Proof: If m =1 (mod 4), then 5 | 3-2™ —1; if m = 46 (mod 72), then 37 | 3-2™ — 1;
if m = 862 (mod 1440), then 11| 3-2" — 1. Now suppose m # 1 (mod 4), m # 46 (mod 72)
and m # 862 (mod 1440). Let b be given by Table 5.1. One can easily check that

_24b N\ _(_2-b -1
3.2m 1) \3.9m_-1) 7

Thus the result follows from Theorem 3.1 by taking ¢ =1 and p =3 - 2" — 1.

Remark 5.1: If m € Nand m = 0,2 (mod 3), in 1993 W. Bosmal[2] showed that 3-2" — 1 is
prime if and only if 3-2™ — 1| S,,,_2(10054 - 23™).
In a similar way, using Theorem 3.1 we can prove

Theorem 5.2: Let m > 3 be a positive integer such that 180 |/m. If m =1 (mod 3), then
713-2"+1;ifm=3 (mod 4), then5|3-2"+1; if m =2 (mod 12), then 13 | 3-2™ +1; if
m = 144 (mod 180), then 61 | 3-2™ +1. Ifm # 1 (mod 3), m # 3 (mod 4), m # 2 (mod 12)
and m # 144 (mod 180), then 3-2™ + 1 is prime if and only if 3-2™ + 1| S;—a(x), where x
18 given by Table 5.2.

m b |x=V3(b1)=0>—3b

m =5 (mod 12) 12 1692

m =6 (mod 12) 28 21868

m =8 (mod 12) 37 50542

m =9 (mod 12) 32 32672

m = 12,24 (mod 36) | 150 3374550

m = 36 (mod 180) 207 8869122

m = 72 (mod 180) 64 261952

m = 108 (mod 180) | 5282 5282 - 27899521

Table 5.2

Theorem 5.3: Let n be a nonnegative integer. Then 3-2207t6 —1 and 3-229"+6 11 are twin
primes if and only if (3 -22°"6)2 — 1| S20,,44(73962).

Proof: Let b = 42. Then 2+b = 44 and 2—b = —40. Since (3gmarsg7) = 1, and 2° = —1
(mod 11) we find

2+b B 11 . 3.220n+6 4 1 . —6+1\ )
3.220n+6 +1 ) \3.220n+6 41 | 11 a 11 7

2—b . 220n+6 4 1 12+1
B el R T (. R R A
3,220n+6:|:1 3.220n+6:|:1 5 5

Thus, applying Theorem 3.1 in the case b = 42 and ¢ = 1 we see that 3-220"%6 4 1 is prime if
and only if 3 - 220776 41| S50,,14(V5(b,1)). To see the result, we note that (322076 41 3.
220746 _ 1) =1 and that V3(b,1) = b3 — 3b = 423 — 3 - 42 = 73962.

In the same way, putting b = 17 and ¢ = 1 in Theorem 3.1 we get
Theorem 5.4: Let n be a nonnegative integer. Then 3-236"t6 —1 and 3-2357+6 11 are twin
primes if and only if (3 - 236"+6)2 — 1| S36,,,4(4862).
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