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ABSTRACT

The Fibonacci number F (G) of a graph G is defined as the number of independent vertex
subsets of G. It was introduced in a paper of Prodinger and Tichy in 1982. There, they
also ask for a formula for the Fibonacci number of a generalized Petersen graph. The aim
of the current paper is to solve this problem by deriving a recursion. It will be shown that
the Fibonacci number of the generalized Petersen graph with 4n+2 vertices is asymptotically
αn+1/2, where α = 5.6709364838 is an algebraic number of degree 5.

1. INTRODUCTION

The concept of the Fibonacci number for graphs was introduced in a paper of Prodinger
and Tichy [6] in 1982. The Fibonacci number F (G) of a graph G is defined as the number of
independent vertex subsets of G, where a set of vertices is said to be independent if it contains
no pair of connected vertices. The name is due to the fact that F (Pn), where Pn is a simple
path of length n, gives the sequence of Fibonacci numbers. Similarly, F (Cn), where Cn denotes
the cycle of length n, gives the Lucas numbers.

Figure 1: The Petersen Graph.
In the original work, the authors could prove that the star has maximal Fibonacci number

among all trees, whereas the path has minimal Fibonacci number. They also considered recur-
sions for several classes of graphs. In subsequent papers ([3, 4]), classes of simply generated
trees were investigated. The concept of Fibonacci numbers even turned out to be of use in
combinatorial chemistry (cf. [5]). One of the problems stated in [6] is the following: we define
the generalized Petersen graph (cf. [2]) Petn by

V (Petn) = {1, . . . , 2n + 1} × {1, 2},

E(Petn) = {((k, 1), (k, 2)) | 1 ≤ k ≤ 2n + 1}∪
{((k, 1), (k + 1, 1)) (mod 2n + 1) | 1 ≤ k ≤ 2n + 1}∪
{((k, 2), (k + 2, 2)) (mod 2n + 1) | 1 ≤ k ≤ 2n + 1}.
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The well-known Petersen graph corresponds to the special case n = 2 (Figure 1). Now, we ask
for a formula for the Fibonacci number of a generalized Petersen graph. This will be solved
by means of a recursion.

2. PRELIMINARIES

Lemma 1: Let v be a vertex of a graph G. If N(v) denotes the neighbourhood of v, we have

F (G) = F (G \ {v}) + F (G \ ({v} ∪N(v))).

Proof: Obviously, F (G\{v}) is the number of independent vertex subsets not containing
v, whereas F (G\({v}∪N(v))) gives the number of independent vertex subsets containing
v.

Next, we draw the generalized Petersen graph in the following way (Figure 2):

Figure 2: Another way to draw a Petersen graph.
The middle row contains the vertices of the form (k, 1), the other rows the vertices of the
form (k, 2). Vertices that are marked with the same letter are identified. In that way, the
generalized Petersen graph can be seen to be some kind of discretisation of a Möbius strip.
Now, by the lemma above (applied consecutively to a, b, c),

F (Petn) = F (Petn \ {a, b, c}) + F (Petn \ ({a, b, c} ∪N(a)))
+ F (Petn \ ({a, b, c} ∪N(b))) + F (Petn \ ({a, b, c} ∪N(c)))
+ F (Petn \ ({a, b, c} ∪N(a) ∪N(c))) + F (Petn \ ({a, b, c} ∪N(b) ∪N(c))).

The purpose of this step is to “cut” the Möbius strip in order to establish a recursion. Each
of the subgraphs appearing in this decomposition has the form shown in Figure 3 with some
of the 12 configurations shown in Figure 4 on the left and right end.
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Figure 3: The common form of the subgraphs.

Figure 4: The 12 terminal configurations.

We won’t care about the left end of the strip, as the recursion is the same for all the possible
configurations. We also note that the same recursion must be true for F (Petn) as well if it
holds for all the summands.

3. DERIVATION OF THE RECURSION

Definition 1: Let the configuration C on the left end of the strip be fixed. By Gi(n), we
denote the graph whose left-end-configuration is C, whose right-end-configuration is the i− th
of the 12 configurations in our list, and whose number of vertices in the uppermost row is n.
Furthermore, let ai(n) = F (Gi(n)).
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Figure 5: The vertices used in the recurrences.
For all i, we choose a vertex v (indicated by a surrounding circle in Figure 5) and apply Lemma
1 to obtain the following system of linear recursions:

a1(n) = a6(n) + a5(n), a7(n) = a9(n) + a1(n),
a2(n) = a5(n) + a6(n− 1), a8(n) = a10(n) + a2(n− 1),

a3(n) = a1(n) + a6(n), a9(n) = a3(n) + a12(n),
a4(n) = a2(n) + a5(n), a10(n) = a4(n− 1) + a11(n− 2),

a5(n) = a1(n− 1) + a7(n− 2), a11(n) = a3(n) + a1(n),
a6(n) = a2(n) + a8(n), a12(n) = a4(n) + a2(n).

Now, we simplify in the following way:

a6(n) = a2(n) + a8(n) = a5(n) + a6(n− 1) + a8(n),
a5(n + 1) = a1(n) + a7(n− 1) = a6(n) + a5(n) + a7(n− 1)

= 2a5(n) + a6(n− 1) + a7(n− 1) + a8(n),
a8(n + 1) = a10(n + 1) + a2(n) = a4(n) + a11(n− 1) + a2(n)

= 2a2(n) + a5(n) + a11(n− 1) = 3a5(n) + 2a6(n− 1) + a11(n− 1),
a7(n) = a9(n) + a1(n) = a3(n) + a12(n) + a6(n) + a5(n)

= a1(n) + 2a6(n) + a4(n) + a2(n) + a5(n) = 3a5(n) + 3a6(n) + 2a2(n)
= 8a5(n) + 5a6(n− 1) + 3a8(n),

a11(n) = a3(n) + a1(n) = 2a1(n) + a6(n) = 3a6(n) + 2a5(n)
= 5a5(n) + 3a6(n− 1) + 3a8(n).
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So we have a system of recursions in a5(n), a6(n), a7(n), a8(n) and a11(n) only. We write this
in matrix form: with

M =


2 1 1 1 0
1 1 0 1 0
8 5 0 3 0
3 2 0 0 1
5 3 0 3 0

 and b(n) =


a5(n + 1)

a6(n)
a7(n)

a8(n + 1)
a11(n)

 ,

we have b(n) = Mb(n−1). The characteristic polynomial of M is x5−3x4−15x3−3x2+13x−4,
so ai(n) satisfies the recurrence relation

ai(n)− 3ai(n− 1)− 15ai(n− 2)− 3ai(n− 3) + 13ai(n− 4)− 4ai(n− 5) = 0

(cf. [1]). This is clear for i = 5, 6, 7, 8, 11, and all others can be written as linear combinations:

a1(n) = a6(n) + a5(n),
a2(n) = a5(n) + a6(n− 1),
a3(n) = a1(n) + a6(n) = a5(n) + 2a6(n),
a4(n) = a2(n) + a5(n) = 2a5(n) + a6(n− 1),
a9(n) = a3(n) + a12(n) = a2(n) + a3(n) + a4(n) = 4a5(n) + 2a6(n) + 2a6(n− 1),

a10(n) = a4(n− 1) + a11(n− 2) = 2a5(n− 1) + a6(n− 2) + a11(n− 2),
a12(n) = a4(n) + a2(n) = 3a5(n) + 2a6(n− 1).

Since we know that F (Petn) can also be written as a linear combination of such sequences,
it must satisfy the same recursive relation. The initial values can be computed directly –
F (Petn) is thus uniquely determined.
Theorem 2: The Fibonacci number F (Petn) of the generalized Petersen graph Petn is given
by its initial values

F (Pet1) = 13, F (Pet2) = 76, F (Pet3) = 435, F (Pet4) = 2461, F (Pet5) = 13971

and the recursion

F (Petn) = 3F (Petn−1) + 15F (Petn−2) + 3F (Petn−3)− 13F (Petn−4) + 4F (Petn−5).

The largest root of the characteristic polynomial is α = 5.6709364838. Therefore, we
also obtain the formula F (Petn) = β · αn + O(|α′|n), where α′ is the second-largest root. By
solving the recursion explicitly, one obtains that β =

√
α = 2.3813728150; β is a root of the

polynomial x5 − x4 − x3 − 3x2 − 5x− 2.
Remark: The Petersen graph can be generalized further in the following way (cf. [2]): if m, r
are integers with m ≥ 3 and r < m/2, we define the generalized Petersen graph Petm,r by

V (Petm,r) = {1, . . . , m} × {1, 2},
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E(Petm,r) = {((k, 1), (k, 2)) | 1 ≤ k ≤ m}∪
{((k, 1), (k + 1, 1)) (mod m) | 1 ≤ k ≤ m}∪
{((k, 2), (k + r, 2)) (mod m) | 1 ≤ k ≤ m}.

Here, we only considered the case of odd m and r = 2. The method can be generalized to any
other fixed r, but the calculations are very cumbersome. However, it seems to be an interesting
problem how

cr := lim
m→∞

m

√
F (Petm,r)

behaves in terms of r. For r = 1, it is easy to obtain c1 = 1 +
√

2; the case r = 2 was only
solved for odd m; however, the argument for even m is exactly the same and gives the same
recursion. One can even show that xm := F (Petm,2) satisfies the recurrence formula

xm = xm−1 + xm−2 + 3xm−3 + 5xm−4 + 2xm−5

from which we also obtain the asymptotics F (Petm,2) ∼ βm. Therefore, we know that c2 =
β = 2.3813728150. Eventually, we state the following problem:
Problem: Does the limit limr→∞ cr exist, and if so, what is its value?
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