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ABSTRACT

The Fibonacci operator approach inspired by Andrews (2004) is explored to investigate
g-analogs of the generalized Fibonacci and Lucas polynomials introduced by Chu and Vicenti
(2003). Their generating functions are compactly expressed in terms of Fibonacci operator
fractions. A determinant evaluation on g-binomial coefficients is also established which extends
a recent result of Sun (2005).

1. INTRODUCTION
The generalized Fibonacci and Lucas polynomials are defined in [11] by
Froi1(t) = Fo(t) +tF,—1(t), n>1 (1)

with the initial conditions Fy(t) = a and F;(t) = b. When ¢ = 1, they reduce, for a = b =1 and
a =2 and b =1, to Fibonacci and Lucas sequences, respectively, which have been extensively
studied for their many beautiful and interesting combinatorial properties.

For the case a = b = 1, several slightly different g-analogs of F,,(t) have been worked out
by Carlitz [4], Cigler [7] and Schur [10]. On the related literature of recurrence relations and
generating functions, refer to [1, 8] for the theory of orthogonal polynomials and [1, 2, 8, 9]
for the Rogers-Ramanujan identities.

Differently from the works just mentioned, Andrews [3] recently introduced the Fibonacci
operator 1, by n,f(x) = f(zq) for any given function f(x). Then he obtained an unusual
operator expression for the generating function of ¢-Fibonacci polynomials. Inspired by this
operator approach, we shall study the full g-analog of F,(¢) for a and b be arbitrary numbers
and establish the corresponding generating functions in terms of n-operator fractions. Then
we shall evaluate a determinant related g-binomial coefficients. Finally for some particular
values of a and b, we shall give g-analogs of some generating functions established in [6], again
in terms of n-operator fractions. We believe that these results on the g-incomplete Fibonacci
and Lucas polynomials are new.

For two indeterminate x and ¢, the shifted factorial is defined by

n—1

(x;9)o =1 and (z;9), = H(l —¢*z) with n=1,2,---.
k=0
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When |¢| < 1, the infinite product

o0

(@59)00 = [[(1 = ")

n=0
is well defined, which leads us to the following expression

(23 ¢) oo

Tq)n = for n € Z.
(:4) ("7 Q)

The Gaussian g-binomial coefficient is defined by

_ (@Dn
|: " :| - (Q?Q)m(lEQ)n_m’ 0 S m S n,
" 0, otherwise.

2. ¢-ANALOGS OF THE GENERALIZED FIBONACCI
AND LUCAS POLYNOMIALS

The g-analogs of generalized Fibonacci and Lucas polynomials are introduced by [3]. Let
us define a sequence of polynomial S, (¢, q) by the recurrence relation

Sn+1(t7Q) = S’ﬂ(tv q) + tqn725n*1(t7 Q)v n=>1 (2)

where Sy(t,q) = a, S1(t,q) = b. It is obvious that S, (¢,1) = F,,(t) with F,(¢) being defined by
(1)

Theorem 1: (The generating function defined by recurrence relation (2)).

1
1—x—ta?n,

Z Sp(t,q)z" = {a+ (b—a)zx}.
n=0

Proof: Let o(z) stand for the expression on the left side of the equation in Theorem 1.
To prove Theorem 1, we need to check the following equivalent relation:
(1 -z —tz*n,)o(z) =a+ (b—a)x.

According to the definition of o(x), we have

atbr+ Y Sp(t,q)z™ =D Su(t,)a" =t Su(t.g)a" g

n>2 n>0 n>0

=a+ br — ax + Z{S’”(t’ q) — Sn—1(t,q) —tq" *S,_2(t,q)}z"

n>2
which reduces to a + (b — a)x in view of recurrence relation (2). O

27



¢-ANALOGS OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

In order to find explicit expression for S, (¢, q), we will need the following lemma.

Lemma 2: (The Fibonacci operator composition)

(e + ta?n,)"a? = a2 3t M @, (3)
320

(z + ta?n,) "z = 2" Z tlzd {?} ¢ (4)
320

Proof: We can proceed with induction principle. For n = 0, the first equation asserts

2?2 = 2. Now suppose the first equation is true for n. Then we can verify it for n + 1 as

follows:

(& + ta?n,) " a? = (z + tan,)a™ 2 Y g [?] ¢ty
320

n+3ztjx] [( )] j(3+1) +xn+4ztj+1 {n] qn+2+j(j+2)
J

Jj=0 Jj=0
23 G i J(G+1) n+3 J ol n n+1+4;2
e [z
j=0 j=0
TS IV SR TCR=010 N N IS T Iy [
copreer ([l
i>

=3 Y i I+ ”+1}
=x t'x .
- ¢ [ J
j=0

where the last line has been justified by g-binomial identity

(ERIRVRSA|

This proves the first equation. The equation (4) can be established similarly. O
Corollary 3: (Explicit expression for S, (¢, q))

tq—aZt”l[n_. ]q”ﬂ)-l-bZtJ[ 1_‘7}q

7>0 7=>0
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Proof: According to the geometric series expansion, we have

1

> Snlt,q)a" = m(a + (b—a)x)
n>0
= S a+ tan) o+ (b a)r)
n>0
= Z(ac + tz?n,)"a + Z(ﬂc + ta®n.)" (b — a)z
n>0 n>0
=a Z(az +tz?n,) "z + t2?) + (b — a) Z(a: + ta?n, )"z
n>0 n>0
o —17 .2 o n=11 ..
—a n ggd | T j " n+1 3¢ . 3(i+1)
)IELD DL Kl PURRTS D SEL Kl P
n>0 7>0 n>0 7>0
.. n .2
Fh-a) Y Y i { .]qj |
n>0 7>0 J

Extract the coefficient of 2™ and we get Corollary 3. O
In view of Corollary 3, we can easily deduce that

Sn,k = [tk]sn (t7 Q)

Y (e P

320
+by {”_1._7}(;9'2
Jj=20 J
. n—1—k k(k—1) n—1—k k2
—a{ b1 ]q +b I q° .

For B,, 1 = Son+t1,n—k, it is trivial to see that

9

n+2k+2i] on n+42k+2i] 2
!

B i kti = @
n+k+1i,k+1 n—1

then we have the following determinant evaluation.

Theorem 4: (determinant identity on g-binomial coefficients).

m(m+1) )T (4% ¢°)n
bm—i—lq 5 (14+5m+6i) H

det  [Bpiktikti = - .
o (@G @n

0<k,n<m
When ¢ — 1, we recover from this theorem a binomial determinant identity appeared in [11].
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Proof: Note that B, 4 ki k+: is a polynomial of degree n in ¢*F with the leading coefficient

b((q ql)” q3(1+3n+4)  We can write By, i xti formally as

i b _1 n n .
n—i—k—l—z k+i — Z )\ 2k] with )\n(n) — ( ) q§(1+3n+41,)

(¢ Dn
where {\;(n)}]_ are constants independent of q~.
For each n with 0 < n < m, defining further
Aj(n)=0 if n<j<m
then we have the following determinant factorization
ogg,?ztgm [Brtktik+i] = Osggtgm [q%j] X ogz‘iﬁtgm Aj(n)].

The former is the Vadermonde determinant whose evaluation reads as

det [¢] = [ (@7 -d¢*)

0<k,j<m .
0<y<j<m
1+ i
= ()UE)TT 2 (0% ¢
n=0

The latter is the determinant of a diagonal matrix, which is evaluated by the product of the
diagonal elements:

m m 2 (143n+41i)
' . . 1+m 1+m 2
(<, Dot = T i) = M

Multiplying both evaluations just displayed and then simplifying the result, we get the deter-
minant identity stated in the theorem. O

3. ¢-ANALOGS OF THE INCOMPLETE FIBONACCI
AND LUCAS POLYNOMIALS

For the initial values a = b = 1, (1) reduces to the ¢-Fibonacci polynomial of Calitz [4].
Similarly for a = 2,b = 1, (1) reduces to the g-analog of the incomplete Lucas polynomial in
[6].

For a =b =1 and a = 2,b = 1 the generating function of F,,(¢,q) and L,(¢,q) are given
by Theorem 1 as follows:

= 1
D Falt gt = (5)
= 1—a—tx*n,

n=0

x — tx?n,
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where equation (5) has first been established by Andrews [3].
From them we can derive also the explicit generating functions.

Theorem 5: (Generating functions)

ZFn(t,q)x" = Z (

= = (@)

2thqj ji—1
N La(tiga" =Y T d) {2-2d}. (8)
n>0 >0 7q)5+1

Proof: By means of geometric series and equations (3)-(4), we can compute

1
1— o — te2n. Z(l’ + )1 = Z(aj + ta?n,)"H(z + ta?)
Nz n>0 n>0
:anzxjtj n— }qj +tzxn+lz 2 { - }qj(ﬂ—l)
n>0  j>0 L] n>0 §>0
:Zaz"ijtj f } i +Z ijt] [ - ]qj(j—l)
n=0 520 - n>0 >0
=Y amy it ﬂ GO0 = 3 gty {”j]} F0D).
n20 520 - n,j>0

Recalling (5) and then applying the ¢g-binomial formula
] . 1
[l 1
>0 J (T3 @nt1

we get the generating function (7). Similarly, one can derive the generating function (8). O

Theorem 6: (Generating functions)

F,(t, tq"2F,_1(t,
ZFk(t,q)xk:x" ( q)+a¢q 1( Q) (9)

o 2
on 1 -2z —tx*n,

S Lt g)at = g Ll DT (40) (10

> 1—x—ta?n,

Proof: Let us denote by §(z) the expression on the left side of the equation in (9). We
prove equivalently the relation:

(1 —x —tx?n,)6(x) = {F.(t,q) + xtq" > F,_1(t,q)}z"

31



¢-ANALOGS OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS

This can be accomplished as follows:

(1 -z —tx?n,) Z Fy(t, q)xk

k>n
—ZFktq ZFktq k+1—tZFktq k+2qk
k>n k>n k>n

=F,(t,q)x" + F41(t, q):zc”Jrl — F,(t, q)a:"Jrl

+ Z {Frya(t,q) — Frpa(t,q) — Fi(t, q)tg" 2} a**?
k>n

= {Fn(t, q) + xtq"*F,_1(t, q)} x™.

Therefore (9) is valid. The equation (10) follows in the same way. O
Lettinga=b=1and a = 2,b =1 in corollary 3, we have

=Y vt [n—. } y+1)+zt1{ __— ']qf

Jj=0 >0
—yw [n— }qj(j—l)
7>0
wen =2 (5 e e | ()]
Jj=0 j>0

S (0 et (P

For two incomplete polynomial sequences defined by
and

Their generating functions defined respectively by

®(z,y) = Z Fon(t,q)x™y™ where 0<m <

m,n=0

and

U(z,y) = Z Ly n(t,@)z™y™ where 0<m < g

m,n=0
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are given by the following:

Theorem 7: (Generating function)

1 1
i) = . 11
@) = T T (1)
1 1

1—:1:'1—y—t:ry27}y

V(z,y) =

(2-y). (12)

Proof: This generating function can be obtained through triple sum

TR 3D ol KR FEE

m,n=0 j=0
_ 2Mgd 1) AN
DI 2.1
0<j<m<+o0 n=0

For the inner sum, changing the summation index by n =i 4 2j and then evaluating it as

oo . .
DI {W} =
i=0 J (

Vi Q)41

2j

we can simplify the double sum as follows:

25

y
O(z,y)= Y, a"gUTN ———
o< oo (y;@)j+1

=ZZ

— =0 yq]+1

1 1
-2 1—y—tay?n,

il g7 T—1) 23

where equation (5) and (7) have been combined for justifying the last step. This proves the
identity (11). Similarly we can deduce the identity (12). O
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