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Abstract. In this article we discuss an interesting but not so well-known matrix determi-
nant formula for Bernoulli polynomials by considering a square version of Pascal’s triangle
and present an extension of this formula to a class of generalized Bernoulli polynomials.

1. Introduction

Pascal’s triangle is one of the most recognized number patterns in mathematics. It is
commonly arranged as the triangular array of numbers

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

(1.1)

However, this arrangement is not the original form of Pascal’s triangle. Pascal himself pre-
sented the following right-angle form of it in 1654 in his work Traité du triangle arithmétique,
where he called it the arithmetical triangle [2]:

1 1 1 1 1
1 2 3 4
1 3 6
1 4
1
...

(1.2)

Even earlier in 1544 Stifel from Germany had constructed the following shifted but incom-
plete version of the arithmetical triangle (referred to as the figurate or binomial triangle by
Pascal’s predecessors):

1
2
3 3
4 6
5 10 10
...

(1.3)

38 VOLUME 46/47, NUMBER 1



BERNOULLI POLYNOMIALS AND PASCAL’S SQUARE

The full version of (1.3),

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

(1.4)

was later used by Jacob Bernoulli in Ars conjectandi, published eight years after his death
in 1713, to establish formulas for sums of powers involving certain coefficients Bn that today
bear his name, the Bernoulli numbers:

N∑
n=1

np =

p∑
n=0

(−1)δnp
p!

n!(p + 1− n)!
BnNp+1−n (1.5)

These numbers, of which the first six are

B0 = 1, B1 = −1/2,
B2 = 1/6, B3 = 0,
B4 = −1/30, B5 = 0,

(1.6)

can be defined by the recursive formula (for n > 1)

n−1∑

k=0

(
n
k

)
Bk = 0. (1.7)

Of course, the Bernoulli numbers can also be defined analytically by the generating function
[3]

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, (1.8)

an approach that allows us to make a connection with Pascal’s triangle, which we discuss
next.

In this article we consider a square version of Pascal’s triangle and demonstrate how it
arises in explicit formulas for Bernoulli numbers, Bernoulli polynomials, and their general-
izations. To this end, we transform (1.4) into an infinite matrix P that we refer to as Pascal’s
square:

P =




1 0 0 0 0 ...
1 1 0 0 0 ...
1 2 1 0 0 ...
1 3 3 1 0 ...
1 4 6 4 1 ...
...




. (1.9)

It follows that the entries of P = (pmn) can be defined by the binomial formula

pmn =

(
m− 1
n− 1

)
, (1.10)
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where for nonnegative integers m and n we have(
m
n

)
=

m · (m− 1)(m− 2) · · · (m− n + 1)

n!
.

The matrix P can in fact be found implicitly in Turnbull’s classic textbook on determinants
[6] where it appears (except for the first two rows and main diagonal) in an explicit deter-
minant formula for Bernoulli numbers1, obtained by equating series coefficients in (1.8) and
solving the corresponding linear system of equations:

Bn =
(−1)n−1

(n + 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 0 0 · · · 0
1 3 3 0 · · · 0
1 4 6 4 · · · 0
1 5 10 10 · · · 0
· · · · · · · · · · · · · · · · · ·(
n+1

0

) (
n+1

1

) (
n+1

2

) (
n+1

3

) · · · (
n+1
n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣
n

(1.11)

where the dimension of the matrix is n×n. More generally, the Bernoulli polynomials Bn(x),
defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(1.12)

and whose value at x = 0 equals Bn, can be similarly expressed by the formula (see [1]):

Bn(x) =
(−1)(n)

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0

x 1
2

1 0 0 0 · · · 0

x2 1
3

1 2 0 0 · · · 0

x3 1
4

1 3 3 0 · · · 0

x4 1
5

1 4 6 4 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn 1

n+1

(
n
0

) (
n
1

) (
n
2

) (
n
3

) · · · (
n

n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

(1.13)

Observe that the matrix in formula (1.11) appears as a sub-matrix in formula (1.13).
The explicit formulas (1.11) and (1.13) are not new, but do not seem to be very well-

known. We have been unable to find references that cite these formulas besides [6] and
[1]. They certainly deserve more attention since they provide a beautiful connection with
Pascal’s triangle and illustrate a useful application of calculus and linear algebra, which is
the first goal of this article. The second goal is to demonstrate how (1.13) can in fact be
extended to a class of generalized Bernoulli polynomials first studied by F. Howard [5], who
considered the following natural generalization of (1.12):

tN

N !
ext

et − TN−1(t)
=

∞∑
n=0

Bn(N, x)
tn

n!
. (1.14)

Here, N is any positive integer and

TN−1(x) =
N−1∑
n=0

tn

n!
(1.15)

1The origin of this formula for the Bernoulli numbers is unclear; the authors have not been able to trace
it back farther than Turnbull.
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is the Maclaurin polynomial of ex having degree N − 1. Howard was able to show that the
polynomials Bn(N, x) defined by (1.14) and referred to as hypergeometric Bernoulli polyno-
mials in [4], share many of the properties possessed by the classical Bernoulli polynomials.
Our contribution in this article is a new determinant formula for Bn(N, x), which generalizes
(1.13):

Bn(N, x) =
(−1)(n)(N !)n1!2!3! · · · (n−N − 1)!

1!2!3! · · · (n− 1)!1!2!3! · · ·N !
|bij| (1.16)

Here, the matrix (bij) has entries

bij =





xi−1, j = 1;
(

i−j+N+1
i−1

)−1
, 2 ≤ j ≤ N + 2;(

i−1
j−N−2

)
, j ≥ N + 2.

(1.17)

Observe that a portion of Pascal’s square appears in the matrix (bij). This becomes clear if
we set m = i, n = j − N − 1. Then pmn = bij for i + 1 ≥ j, j ≥ N + 2, where P = (pmn)
is Pascal’s square defined by (1.10). Thus it can be argued that Pascal’s square is a natural
extension of Pascal’s triangle.

The remainder of this article is devoted to justifying the matrix formulas presented in
this section, all of which is known except for (1.16) relating to hypergeometric Bernoulli
polynomials (stated as Theorem 3.1 in the next section), which we believe is new.

Historical Comment. It is possible that Bernoulli would have discovered formula (1.11)
had he known about Leibniz’ theory in solving linear systems of equations via matrices and
determinants, which essentially evolved into our modern theory of linear algebra. Unfortu-
nately, Leibniz never published any of his works on this topic [7].

2. Bernoulli Polynomials and Matrix Determinants

Let f and g be functions described by power series

f(t) =
∞∑

n=0

cntn, g(t) =
∞∑

n=0

antn. (2.1)

Consider their quotient:

f(t)

g(t)
=

∞∑
n=0

Ant
n. (2.2)

A formula for An can be obtained by equating coefficients in (2.2), which yields the system
of equations

c0 = a0A0,
c1 = a0A1 + a1A0,
c2 = a0A2 + a1A1 + a2A0,
· · ·
cn = a0An + a1An−1 + · · ·+ anA0.

(2.3)
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From which, solving for An utilizing Cramer’s rule, we obtain (see [6])

An = (−1)n 1

an
0

∣∣∣∣∣∣∣∣∣∣∣

c0 a0 0 0 · · · 0
c1 a1 a0 0 · · · 0
c2 a2 a1 a0 · · · 0
· · · · · · · · · · · · · · · · · ·
cn−1 an−1 an−2 an−3 · · · a0

cn an an−1 an−2 · · · a1

∣∣∣∣∣∣∣∣∣∣∣
n+1

, (2.4)

where the index n + 1 refers to the dimension of the matrix.
To apply this to the Bernoulli polynomials Bn(x), we employ (1.12) and view it as the

division of two series as follows:

ext

et−1
t

=

∞∑
n=0

xntn

n!

∞∑
n=0

tn

(n+1)!

=
∞∑

n=0

Antn, (2.5)

Since Bn(x) = n!An, we have from (2.4) the following determinant formula upon setting
cn = xn/n! and an = 1/(n + 1)! :

Bn(x) = n!(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0
x
1!

1
2!

1 0 0 0 · · · 0
x2

2!
1
3!

1
2!

1 0 0 · · · 0
x3

3!
1
4!

1
3!

1
2!

1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn

n!
1

(n+1)!
1
n!

1
(n−1)!

1
(n−2)!

1
(n−3)!

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= n!(−1)n
∣∣b1

ij

∣∣

(2.6)

where

b1
ij =





0, if i + 1 < j;

xi−1/(i− 1)!, j = 1;

1/(i− j + 2)!, i + 1 ≥ j, j 6= 1.

(2.7)

Next, we modify the entries of the matrix (b1
ij) in (2.6) by performing the following row and

column operations.

1. Beginning with the first row, we factor 1/(i− 1)! from row i to obtain

Bn(x) = n!(−1)(n)

1!2!3!···(n−1)!(n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0

x 1
2!

1 0 0 0 0

x2 2!
3!

1 2! 0 0 0

x3 3!
4!

1 3!
2!

3! 0 0

· · · · · · · · · · · · · · · · · · · · ·
xn n!

(n+1)!
1 n!

(n−1)!
n!

(n−2)!
· · · n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= n!(−1)(n)

1!2!3!···(n−1)!(n)!

∣∣b2
ij

∣∣

(2.8)
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where

b2
ij =





0, if i + 1 < j;

xi−1, j = 1;

(i− 1)/i!, j = 2;

(i− 1)!/(i− j + 2)!, i + 1 ≥ j, j 6= 1, 2.

(2.9)

2. Now, starting with the third column, we factor (j − 3)! from column j in (b2
ij). This

yields

Bn(x) = (−1)(n)1!2!3!···(n−2)!
1!2!3!···(n−1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0

x 1
2!

1 0 0 0 0

x2 2!
3!

1 2! 0 0 0

x3 3!
4!

1 3!
2!

3!
2!

0 0

· · · · · · · · · · · · · · · · · · 0

xn n!
(n+1)!

1 n!
(n−1)!

n!
(n−2)!2!

· · · n!
2!(n−2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= (−1)(n)1!2!3!···(n−2)!
1!2!3!···(n−1)!

∣∣b3
ij

∣∣

(2.10)

where

b3
ij =





xi−1, j = 1;

1/i, j = 2;(
i−1
j−3

)
, j > 2.

(2.11)

Lastly, the matrix (b3
ij) in (2.10) can be simplified and written in terms of binomials from

which most of Pascal’s square appears.

Theorem 2.1 (Costabile, Dell’Accio, Gualtieri).

Bn(x) = (−1)n

(n−1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0

x 1
2

1 0 0 0 · · · 0

x2 1
3

1 2 0 0 · · · 0

x3 1
4

1 3 3 0 · · · 0

x4 1
5

1 4 6 4 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn 1

n+1

(
n
0

) (
n
1

) (
n
2

) (
n
3

) · · · (
n

n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= (−1)n

(n−1)!
|bij|

(2.12)

where

bij =





xi−1, j = 1;

1/i, j = 2;(
i−1
j−3

)
, j > 2.

(2.13)

Note. In order to obtain formula (1.11) for Bernoulli numbers, it suffices to set x = 0 in
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(2.12) and expand the determinant along the first column to obtain:

Bn = Bn(0) =
(−1)n−1

(n + 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1 0 0 · · · 0
1
3

1 2 0 · · · 0
1
4

1 3 3 · · · 0
1
5

1 4 6 · · · 0

· · · · · · · · · · · · · · · · · ·
1

n+1

(
n
0

) (
n
1

) (
n
2

) · · · (
n

n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
n

(2.14)

Then perform the following row and column operations on the matrix appearing in (2.14):
multiply row i by i + 1 and divide column j, beginning with the third column, by j − 1.
From this we obtain (1.11) with Pascal’s square embedded in it but with the main diagonal
deleted.

3. Hypergeometric Bernoulli Polynomials

In 1977 Howard generalized Bernoulli polynomials by considering the following generating
function:

tN

N !
ext

et − TN−1(t)
=

∞∑
n=0

Bn(N, x)
tn

n!
(3.1)

where N is a positive integer and

TN(t) =
N∑

n=0

tn

n!
. (3.2)

We shall refer to Bn(N, x) as hypergeometric Bernoulli polynomials of order N . Observe
that for N = 1, equation (3.1) reduces to (1.12). As before we express Howard’s generating
function as the division of two series as follows:

ext

et−TN−1(t)
tN

N !

=

∞∑
n=o

cntn

∞∑
n=0

antn
, (3.3)

where cn = xn

n!
and an = N !

(n+N)!
. It follows from (2.4) that

Bn(N, x) = n!(−1)(n)
∣∣b1

ij

∣∣ , (3.4)

where the (n + 1)× (n + 1) matrix (b1
ij) has entries

b1
ij =





0, i + 1 > j;
xi−1

(i−1)!
, i + 1 ≥ j, j = 1;

N !
(i−j+N+1)!

, i + 1 ≥ j, j ≥ 2.

(3.5)

Next, we perform the following row and column operations on the matrix (b1
ij) as before.

1. Starting with the second column, we factor N ! from column j so that

Bn(N, x) = n!(−1)(n)(N !)n
∣∣b2

ij

∣∣ (3.6)
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where

b2
ij =





0, j + 1 > i;
xi−1

(i−1)!
, i + 1 ≥ j, j = 1;
1

(i−j+N+1)!
, i + 1 ≥ j, j ≥ 2.

(3.7)

2. Beginning with the first row, we factor 1/(i− 1)! from row i in (b2
ij)so that

Bn(N, x) = n!
(−1)(n)(N !)n

1!2!3! · · ·n!

∣∣b3
ij

∣∣ (3.8)

where

b3
ij =





0, i + 1 > j;

xi−1, i + 1 ≥ j, j = 1;
(i−1)!

(i−j+N+1)!
, i + 1 ≥ j, j ≥ 2.

(3.9)

3. Now, for columns 2 to N + 2, we factor 1/(N + 2 − j)! from column j in (b3
ij). For

columns greater than N + 2, we factor (j −N − 2)! from column j. This yields

Bn(N, x) =
(−1)(n)(N !)n1!2!3! · · · (n−N − 1)!

1!2!3! · · · (n− 1)!1!2!3! · · ·N !

∣∣b4
ij

∣∣ (3.10)

where

b4
ij =





0, i + 1 > j;

xi−1, i + 1 ≥ j, j = 1;
(i−1)!(N+2−j)!

(i−j+N+1)!
, i + 1 ≥ j, 2 ≤ j ≤ N + 2;

(i−1)!
(i−j+N+1)!(j−N−2)!

, i + 1 ≥ j, j ≥ N + 2.

(3.11)

The resulting matrix is then simplified and expressed in terms of binomials, which leads to
our main result.

Theorem 3.1.

Bn(N, x) =
(−1)(n)(N !)n1!2!3! · · · (n−N − 1)!

1!2!3! · · · (n− 1)!1!2!3! · · ·N !
|bij| , (3.12)

where

bij =





xi−1, j = 1;
(

i−j+N+1
i−1

)−1
, 2 ≤ j ≤ N + 2;(

i−1
j−N−2

)
, j ≥ N + 2.

(3.13)

Discussion of Special Cases

I. N = 0
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Below is the explicit determinant formula for hypergeometric Bernoulli polynomials when
N = 0, which reduces to the binomial polynomials:

Bn(0, x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0
x 1 1 0 0 0 · · · 0
x2 1 2 1 0 0 · · · 0
x3 1 3 3 1 0 · · · 0
x4 1 4 6 4 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · 0
xn 1

(
n
1

) (
n
2

) (
n
3

) (
n
4

) · · · (
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= (x− 1)n. (3.14)

Notice the entire version of Pascal’s square is embedded in the matrix above starting with
the second column.

II. N = 1

In this case it is easy to check that formula (3.12) reduces to (1.13).

III. N = 2

Below is the explicit determinant formula for Bernoulli Polynomials when N = 2:

Bn(2, x) =
(−1)n2n−1

(n− 1)!(n− 2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0

x 1
3

1
2

0 0 0 · · · 0

x2 1
6

1
3

1 0 0 · · · 0

x3 1
10

1
4

1 3 0 · · · 0

x4 1
15

1
5

1 4 6 · · · 0

· · · · · · · · · · · · · · · · · · · · · 0

xn 1

(n+2
2 )

1

(n+1
1 )

1
(

n
1

) (
n
2

) · · · (
n

n−3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

(3.15)

Notice a smaller portion of Pascal’s square appears in (3.15) beginning with the third row
and fourth column.

Concluding Remarks. The connection between hypergeometric Bernoulli polynomials
and hypergeometric functions is seen through the relation

tN

N !
ext

et − TN−1(t)
=

ext

1F1(1, N + 1, t)
, (3.16)

where the confluent hypergeometric function 1F1(1, N + 1, t) is defined by

1F1(a, b, t) =
∞∑

n=0

(a)n

(b)n

tn

n!
. (3.17)

Since hypergeometric Bernoulli polynomials are defined by (3.1), we can employ (3.16) to
further generalize Bn(N, x) by using the alternate definition

∞∑
n=0

Bn(N, x)
tn

n!
=

ext

1F1(1, N + 1, t)
, (3.18)

valid for all positive real values of N . An interesting open problem is to extend formula
(3.12) for Bn(N, x) in this situation.
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