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Abstract. Power sums of Pell and Pell–Lucas polynomials are examined. Twelve summation
formulas are derived which contain the identities of Ozeki (2009) and Prodinger (2009) as
special cases. Furthermore, two general formulas are shown for odd power sums of the unified
Pell and Pell–Lucas polynomials.

1. Introduction and Preliminaries

Extending the classical Fibonacci and Lucas numbers, Horadam and Mahon [6] introduced
Pell and Pell–Lucas polynomials. They are defined respectively by the recurrence relation

Pn(x) = 2xPn−1(x) + Pn−2(x),

Qn(x) = 2xQn−1(x) +Qn−2(x);

with different initial conditions

P0(x) = 0 and P1(x) = 1,

Q0(x) = 2 and Q1(x) = 2x.

They will be shortened as Pn = Pn(x) and Qn = Qn(x), which reduce to Pn(1/2) = Fn and
Qn(1/2) = Ln, the classical Fibonacci and Lucas numbers. The corresponding generating
functions read as

∞
∑

k=0

Pk(x)y
k =

y

1− 2xy − y2
=

1

(α− β)(1 − yα)
−

1

(α− β)(1 − yβ)
,

∞
∑

k=0

Qk(x)y
k =

2− 2xy

1− 2xy − y2
=

1

1− yα
+

1

1− yβ
;

which lead to the explicit formulas of Binet forms

Pn(x) =
αn − βn

α− β
and Qn(x) = αn + βn

where for brevity, we employ the following two symbols

α := x+
√

x2 + 1 and β := x−
√

x2 + 1.

It is classically well–known that the mth power sum of the first n natural numbers results in
a polynomial of n. Recently, attention has been turned to the similar problem of polynomial
representation for power sums of Fibonacci and Lucas numbers, proposed by Melham (cf. [3]
and [9]). Ozeki [5, Theorem 2] found the following interesting formula
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n
∑

k=1

F 1+2m
2k =

m
∑

i=0

F 1+2i
1+2n

m
∑

j=i

(

1 + 2m
m− j

)(

i+ j + 1
2i+ 1

)(1 + 2j)(−5)i−m

(1 + i+ j)L1+2j

−

m
∑

j=0

(−1)m−j

5m

(

1 + 2m
m− j

)F1+2j

L1+2j
.

Prodinger [7] derived 8 formulas for the following power sums of Fibonacci and Lucas numbers
n
∑

k=1

F δ+2m
ε+2k and

n
∑

k=1

Lδ+2m
ε+2k where ε, δ ∈ {0, 1}.

Four of them for odd power sums have recently been unified by Chu and Li [2] via the inversion
technique, where two additional parameters are introduced.

Reading carefully Prodinger’s paper, we find that his approach can further be employed to
investigate the power sums of Pell and Pell–Lucas polynomials

n
∑

k=1

P δ+2m
ε+2kλ and

n
∑

k=1

Qδ+2m
ε+2kλ where λ ∈ N.

We shall establish 12 summation formulas, which express the power sums just displayed
as polynomials of Pn and Qn. Six of them may be considered as polynomial extensions of
Prodinger’s results, while the other remaining six seem new even when considering their re-
duced cases of Fibonacci and Lucas numbers. What is also remarkable lies in the fact that for
each power sum, there exist two polynomial expressions both in Pn and in Qn.

Throughout the paper, we shall utilize two fundamental lemmas on binomial sums, which
contain, for “y → 1/x, n → 2n + 1” and “y → −1/x, n → 2n”, Prodinger’s binomial
relations [7, Equations 2.1 and 3.2] as particular cases.

Lemma 1 (Comtet [4, Section 4.9]).

xn + yn =
∑

0≤k≤n/2

(−1)k
n

n− k

(

n− k
k

)

(xy)k(x+ y)n−2k.

Lemma 2 (Carlitz [1, page 23]).

xn − yn

x− y
=

∑

0≤k<n/2

(−1)k
(n− k − 1

k

)

(xy)k(x+ y)n−2k−1.

Both lemmas can also be found in Swamy [8, Equations 1 and 2] and considered as reduced
relations of symmetric functions with two variables. In fact, the second relation can be deduced
from the first one as follows. Rewrite the fraction as a finite sum

xn − yn

x− y
=

n−1
∑

i=0

xiyn−i−1 =
∑

0≤i<n/2

xn−2i−1 + yn−2i−1

1 + χ(1 + 2i = n)
(xy)i

where χ is the logical function defined by χ(true) = 1 and χ(false) = 0. Applying Lemma 1,
we get the double sum expression

xn − yn

x− y
=

∑

0≤i+j<n/2

(−1)j
n− 2i− 1

n− 2i− j − 1

(

n− 2i− j − 1
j

)

(xy)i+j(x+ y)n−2i−2j−1.
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The last double sum can be reformulated by letting i+ j = k

xn − yn

x− y
=

∑

0≤k<n/2

(xy)k(x+ y)n−2k−1
k

∑

j=0

(−1)j
n− 2k + 2j − 1

n− 2k + j − 1

(

n− 2k + j − 1
j

)

.

This leads to the right member of the equation displayed in Lemma 2 because the binomial
sum with respect to j results in the closed form

k
∑

j=0

(−1)j
n− 2k + 2j − 1

n− 2k + j − 1

(

n− 2k + j − 1
j

)

= (−1)k
(

n− k − 1
k

)

which is justified by the telescoping method and the binomial relation

n− 2k + 2j − 1

n− 2k + j − 1

(n− 2k + j − 1
j

)

=
(n− 2k + j − 1

j

)

+
(n− 2k + j − 2

j − 1

)

.

The rest of the paper will be organized as follows. In the next section, six summation
formulas will be derived for power sums of Pell polynomials. Then six similar theorems will
be shown for power sums of Pell–Lucas polynomials in the third section. Finally in the
fourth section, the paper will end up with illustrating two further formulas for odd powers of
Gn(a, c, x), the unified polynomials extending those named by Pell and Pell–Lucas with two
extra parameters a and c.

2. Power Sums for Pell Polynomials

In this section, we will investigate power sums of Pell polynomials. According to the bino-
mial theorem, it is trivial to check that

P δ+2m
ε+2kλ =

{

αε+2kλ − βε+2kλ

α− β

}δ+2m

=

m
∑

j=−δ−m

(−1)m−j
(

δ + 2m
m− j

) (αδ+m+jβm−j)ε+2kλ

(α− β)δ+2m
.

Writing the summation domain as

{−δ −m ≤ j ≤ m} = {−δ −m ≤ j ≤ −δ} ∪ {1− δ ≤ j ≤ m}

and then inverting the summation order, by j → −δ − j, for the first one, we get the equality

P δ+2m
ε+2kλ = χ(δ = 0)

(

2m
m

) (−1)m(1+ε)

(α− β)2m
+

m
∑

j=1−δ

(−1)m−j
(

δ + 2m
m− j

)

×

{

(αδ+m+jβm−j)ε+2kλ

(α− β)δ+2m
+ (−1)δ

(αm−jβδ+m+j)ε+2kλ

(α− β)δ+2m

}

which can further be simplified into the equation

P δ+2m
ε+2kλ = χ(δ = 0)

(

2m
m

)(−1)m(1+ε)

(α − β)2m
+

m
∑

j=1−δ

(

δ + 2m
m− j

)(−1)(m−j)(1+ε)

(α− β)δ+2m

×
{

α(δ+2j)(ε+2kλ)+(−1)δβ(δ+2j)(ε+2kλ)
}

.
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Summing over 1 ≤ k ≤ n for the expression displayed in the last line
n
∑

k=1

{

α(δ+2j)(ε+2kλ) + (−1)δβ(δ+2j)(ε+2kλ)
}

= α(δ+2j)εα
2(δ+2j)λ − α2(δ+2j)(n+1)λ

1− α2(δ+2j)λ

+ (−1)δβ(δ+2j)ε β
2(δ+2j)λ − β2(δ+2j)(n+1)λ

1− β2(δ+2j)λ

= α(δ+2j)(ε−λ) α
2(δ+2j)(n+1)λ − α2(δ+2j)λ

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

+ (−1)δ+λδβ(δ+2j)(ε−λ) β
2(δ+2j)λ − β2(δ+2j)(n+1)λ

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

=
α(δ+2j)(ε+λ+2nλ) − (−1)δ+λδβ(δ+2j)(ε+λ+2nλ)

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

−
α(δ+2j)(ε+λ) − (−1)δ+λδβ(δ+2j)(ε+λ)

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

we derive the following formula for power sums of Pell polynomials.

Proposition 3 (Reduction formula).
n
∑

k=1

P δ+2m
ε+2kλ =

n(−1)m(1+ε)

(α− β)2m

(

2m
m

)

χ(δ = 0)−

m
∑

j=1−δ

(−1)(m−j)(1+ε)

(α− β)δ+2m

(

δ + 2m
m− j

)

×

{

α(δ+2j)(ε+λ)−(−1)δ+λδβ(δ+2j)(ε+λ)

α(δ+2j)λ−(−1)λδβ(δ+2j)λ − α(δ+2j)(ε+λ+2nλ)−(−1)δ+λδβ(δ+2j)(ε+λ+2nλ)

α(δ+2j)λ−(−1)λδβ(δ+2j)λ

}

.

Based on this proposition, three cases corresponding to “δ = 0”, “δ = 1, λ ≡2 1” and
“δ = 1, λ ≡2 0” will be examined, where λ ≡2 ε stands for the congruence relation λ ≡ ε
(mod 2).

2.1. δ = 0. In this case, the equation displayed in Proposition 3 becomes
n
∑

k=1

P 2m
ε+2kλ =

(2m
m

)n(−1)m(1+ε)

(α− β)2m

−
m
∑

j=1

( 2m
m− j

)(−1)(m−j)(1+ε)

(α− β)2m

{

P2j(ε+λ)

P2jλ
−

P2j(ε+λ+2nλ)

P2jλ

}

.

(1)

According to Lemma 2, we get the equality

(α− β)
P2j(ε+λ+2nλ)

Qε+λ+2nλ
=

α2j(ε+λ+2nλ) − β2j(ε+λ+2nλ)

(αε+λ+2nλ + βε+λ+2nλ)

=

j−1
∑

i=0

(−1)i(ε+λ)
(2j − i− 1

i

)(

αε+λ+2nλ − βε+λ+2nλ
)2j−2i−1

=

j
∑

i=1

(−1)(j−i)(ε+λ)
( i+ j − 1

2i− 1

)(

αε+λ+2nλ − βε+λ+2nλ
)2i−1
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and derive the following double sum expression

n
∑

k=1

P 2m
ε+2kλ =

(

2m
m

)n(−1)m(1+ε)

4m(1 + x2)m
−

m
∑

j=1

(

2m
m− j

)(−1)(m−j)(1+ε)

4m(1 + x2)m

×

{

P2j(ε+λ)

P2jλ
−

Qε+λ+2nλ

P2jλ

j
∑

i=1

(−1)(j−i)(ε+λ)
(

i+ j − 1
2i− 1

) P 2i−1
ε+λ+2nλ

41−i(1 + x2)1−i

}

.

This gives rise to the following summation theorem, whose particular case corresponding to
ε = λ = 1 has been treated by Prodinger [7].

Theorem 4 (Representation in Pell polynomials).

n
∑

k=1

P 2m
ε+2kλ =

(

2m
m

)n(−1)m(1+ε)

4m(1 + x2)m
−

m
∑

j=1

P2j(ε+λ)

P2jλ

(

2m
m− j

)(−1)(m−j)(1+ε)

4m(1 + x2)m

+
m
∑

i=1

P 2i−1
ε+λ+2nλ

m
∑

j=i

( 2m
m− j

)( i+ j − 1
2i− 1

)(−1)(m−j)(1+ε)+(j−i)(ε+λ)Qε+λ+2nλ

4m−i+1(1 + x2)m−i+1P2jλ
.

Observe that we also have the equality

P2j(ε+λ+2nλ)

Pε+λ+2nλ
=

α2j(ε+λ+2nλ) − β2j(ε+λ+2nλ)

αε+λ+2nλ − βε+λ+2nλ

=

j−1
∑

i=0

(−1)i(1+ε+λ)
(

2j − i− 1
i

)(

αε+λ+2nλ + βε+λ+2nλ
)2j−2i−1

=

j
∑

i=1

(−1)(j−i)(1+ε+λ)
(

i+ j − 1
2i− 1

)(

αε+λ+2nλ + βε+λ+2nλ
)2i−1

and consequently an alternative expression

n
∑

k=1

P 2m
ε+2kλ =

(

2m
m

)n(−1)m(1+ε)

4m(1 + x2)m
−

m
∑

j=1

(

2m
m− j

)(−1)(m−j)(1+ε)

4m(1 + x2)m

×

{

P2j(ε+λ)

P2jλ
−

Pε+λ+2nλ

P2jλ

j
∑

i=1

(−1)(j−i)(1+ε+λ)
(

i+ j − 1
2i− 1

)

Q2i−1
ε+λ+2nλ

}

.

It can further be stated as another summation formula, whose special case ε = 0 and λ = 1
can be found in Prodinger [7].

Theorem 5 (Representation in Pell–Lucas polynomials).

n
∑

k=1

P 2m
ε+2kλ =

(

2m
m

)n(−1)m(1+ε)

4m(1 + x2)m
−

m
∑

j=1

P2j(ε+λ)

P2jλ

(

2m
m− j

) (−1)(m−j)(1+ε)

4m(1 + x2)m

+

m
∑

i=1

Q2i−1
ε+λ+2nλ

m
∑

j=i

( 2m
m− j

)( i+ j − 1
2i− 1

)(−1)(m−i)(1+ε)+(j−i)λPε+λ+2nλ

4m(1 + x2)mP2jλ
.
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2.2. δ = 1 and λ ≡2 1. Under the replacement λ → 1 + 2λ, the corresponding equation
displayed in Proposition 3 reads as

n
∑

k=1

P 1+2m
ε+2k+4kλ =

m
∑

j=0

(−1)(m−j)(1+ε)

(α− β)2m

(1 + 2m
m− j

)

{

P(1+2j)(1+ε+2λ+2n+4nλ)

Q(1+2j)(1+2λ)
−
P(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)

}

. (2)

According to Lemma 1, we can rewrite the difference

P(1+2j)(1+ε+2λ+2n+4nλ) =
α(1+2j)(1+ε+2λ+2n+4nλ) − β(1+2j)(1+ε+2λ+2n+4nλ)

α− β

=

j
∑

i=0

(−1)(j−i)(1+ε) 1 + 2j

1 + 2i

(

i+ j
2i

)

(α − β)2iP 1+2i
ε+(1+2n)(1+2λ)

which leads to the following summation theorem.

Theorem 6 (Representation in Pell polynomials).

n
∑

k=1

P 2m+1
ε+2k+4kλ = −

m
∑

j=0

P(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)

(1 + 2m
m− j

) (−1)(m−j)(1+ε)

4m(1 + x2)m

+

m
∑

i=0

P 1+2i
1+ε+2λ+2n+4nλ

4m−i(1 + x2)m−i

m
∑

j=i

(

1 + 2m
m− j

)1 + 2j

1 + 2i

(

i+ j
2i

)(−1)(m−i)(1+ε)

Q(1+2j)(1+2λ)
.

This theorem contains two known particular cases. First, Ozeki [5] got the formula corre-
sponding to ε = λ = 0. Subsequently, Prodinger [7] derived the case corresponding to ε = 1
and λ = 0 besides Ozeki’s one.

Similarly, by invoking Lemma 2, we also have the equality

P(1+2j)(1+ε+2λ+2n+4nλ)

P1+ε+2λ+2n+4nλ
=
α(1+2j)(1+ε+2λ+2n+4nλ) − β(1+2j)(1+ε+2λ+2n+4nλ)

α1+ε+2λ+2n+4nλ − β1+ε+2λ+2n+4nλ

=

j
∑

i=0

(−1)(j−i)ε
(

i+ j
2i

)

Q2i
1+ε+2λ+2n+4nλ

which results consequently in another summation formula.

Theorem 7 (Representation in Pell–Lucas polynomials).

n
∑

k=1

P 2m+1
ε+2k+4kλ = −

m
∑

j=0

P(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)

(

1 + 2m
m− j

)(−1)(m−j)(1+ε)

4m(1 + x2)m

+
P1+ε+2λ+2n+4nλ

4m(1 + x2)m

m
∑

i=0

Q2i
1+ε+2λ+2n+4nλ

m
∑

j=i

(

1 + 2m
m− j

)(

i+ j
2i

) (−1)(m−i)ε+m−j

Q(1+2j)(1+2λ)
.

2.3. δ = 1 and λ ≡2 0. Under the replacement λ → 2λ, the corresponding equation displayed
in Proposition 3 can be stated as

n
∑

k=1

P 2m+1
ε+4kλ =

m
∑

j=0

(−1)(m−j)(1+ε)

(α− β)2+2m

(

1 + 2m
m− j

)

{

Q(1+2j)(ε+2λ+4nλ)

P2(1+2j)λ
−

Q(1+2j)(ε+2λ)

P2(1+2j)λ

}

. (3)
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In view of Lemma 2, we have the expression

Q(1+2j)(ε+2λ+4nλ)

Qε+2λ+4nλ
=
α(1+2j)(ε+2λ+4nλ) + β(1+2j)(ε+2λ+4nλ)

αε+2λ+4nλ + βε+2λ+4nλ

=

j
∑

i=0

(−1)(j−i)ε
(

i+ j
2i

)

(α− β)2iP 2i
ε+2λ+4nλ

which leads consequently to the summation theorem.

Theorem 8 (Representation in Pell polynomials).

n
∑

k=1

P 2m+1
ε+4kλ = −

m
∑

j=0

Q(1+2j)(ε+2λ)

P2(1+2j)λ

(

1 + 2m
m− j

) (−1)(m−j)(1+ε)

41+m(1 + x2)1+m

+
m
∑

i=0

P 2i
ε+2λ+4nλ

m
∑

j=i

(1 + 2m
m− j

)( i+ j
2i

) (−1)(m−i)ε+m−j

{4(1 + x2)}1+m−i

Qε+2λ+4nλ

P2(1+2j)λ
.

Alternatively, applying Lemma 1 gives the expression

Q(1+2j)(ε+2λ+4nλ) =α(1+2j)(ε+2λ+4nλ) + β(1+2j)(ε+2λ+4nλ)

=

j
∑

i=0

(−1)(j−i)(1+ε) 1 + 2j

1 + 2i

(

i+ j
2i

)

Q1+2i
ε+2λ+4nλ

from which we derive another summation formula.

Theorem 9 (Representation in Pell–Lucas polynomials).

n
∑

k=1

P 2m+1
ε+4kλ = −

m
∑

j=0

Q(1+2j)(ε+2λ)

P2(1+2j)λ

(

1 + 2m
m− j

) (−1)(m−j)(1+ε)

41+m(1 + x2)1+m

+

m
∑

i=0

Q1+2i
ε+2λ+4nλ

4m+1(1 + x2)m+1

m
∑

j=i

(

1 + 2m
m− j

)1 + 2j

1 + 2i

(

i+ j
2i

)(−1)(m−i)(1+ε)

P2(1+2j)λ
.

3. Power Sums for Pell–Lucas Polynomials

Analogously, the power sums of Pell–Lucas polynomials can be considered. First, it is not
difficult to check that

Qδ+2m
ε+2kλ = (αε+2kλ + βε+2kλ)δ+2m

=

m
∑

j=−δ−m

(

δ + 2m
m− j

)

(αδ+m+jβm−j)ε+2kλ.

Similarly as for P δ+2m
ε+2kλ, the last sum can be reformulated as

Qδ+2m
ε+2kλ = χ(δ = 0)

(

2m
m

)

(−1)mε +
m
∑

j=1−δ

(

δ + 2m
m− j

)

(−1)(m−j)ε

×
{

α(δ+2j)(ε+2kλ) + β(δ+2j)(ε+2kλ)
}

.

MAY 2011 145



THE FIBONACCI QUARTERLY

Summing over 1 ≤ k ≤ n for the expression displayed in the last line
n
∑

k=1

{

α(δ+2j)(ε+2kλ) + β(δ+2j)(ε+2kλ)
}

= α(δ+2j)εα
2(δ+2j)λ − α2(δ+2j)(n+1)λ

1− α2(δ+2j)λ

+ β(δ+2j)ε β
2(δ+2j)λ − β2(δ+2j)(n+1)λ

1− β2(δ+2j)λ

=
α(δ+2j)(ε+λ+2nλ) − (−1)λδβ(δ+2j)(ε+λ+2nλ)

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

−
α(δ+2j)(ε+λ) − (−1)λδβ(δ+2j)(ε+λ)

α(δ+2j)λ − (−1)λδβ(δ+2j)λ

we find the following formula for power sums of Pell–Lucas polynomials.

Proposition 10 (Reduction formula).
n
∑

k=1

Qδ+2m
ε+2kλ = n(−1)mε

(

2m
m

)

χ(δ = 0)−

m
∑

j=1−δ

(−1)(m−j)ε
(

δ + 2m
m− j

)

×

{

α(δ+2j)(ε+λ)−(−1)λδβ(δ+2j)(ε+λ)

α(δ+2j)λ−(−1)λδβ(δ+2j)λ − α(δ+2j)(ε+λ+2nλ)−(−1)λδβ(δ+2j)(ε+λ+2nλ)

α(δ+2j)λ−(−1)λδβ(δ+2j)λ

}

.

Now we are ready to examine three cases of the last power sum.

3.1. δ = 0. In this case, the equation displayed in Proposition 10 reads as
n
∑

k=1

Q2m
ε+2kλ = n(−1)mε

(

2m
m

)

−

m
∑

j=1

(−1)(m−j)ε
(

2m
m− j

)

{

P2j(ε+λ)

P2jλ
−

P2j(ε+λ+2nλ)

P2jλ

}

. (4)

By means of Lemma 2, the last fraction can be written as

(α− β)
P2j(ε+λ+2nλ)

Qε+λ+2nλ
=

α2j(ε+λ+2nλ) − β2j(ε+λ+2nλ)

αε+λ+2nλ + βε+λ+2nλ

=

j−1
∑

i=0

(−1)i(ε+λ)
(2j − i− 1

i

)(

αε+λ+2nλ − βε+λ+2nλ
)2j−2i−1

=

j
∑

i=1

(−1)(j−i)(ε+λ)
(

i+ j − 1
2i− 1

)(

αε+λ+2nλ − βε+λ+2nλ
)2i−1

which leads to the following double sum expression
n
∑

k=1

Q2m
ε+2kλ =

(

2m
m

)

n(−1)mε −

m
∑

j=1

(

2m
m− j

)

(−1)(m−j)ε

×

{

P2j(ε+λ)

P2jλ
−

Qε+λ+2nλ

P2jλ

j
∑

i=1

(−1)(j−i)(ε+λ)

41−i(1 + x2)1−i

(

i+ j − 1
2i− 1

)

P 2i−1
ε+λ+2nλ

}

.

Interchanging the summation order gives rise to the following theorem which reduces, for ε = 1
and λ = 1, to a formula due to Prodinger [7].
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Theorem 11 (Representation in Pell polynomials).
n
∑

k=1

Q2m
ε+2kλ = (−1)mε

(

2m
m

)

n−

m
∑

j=1

(−1)(m−j)ε
(

2m
m− j

)P2j(ε+λ)

P2jλ

+

m
∑

i=1

P 2i−1
2nλ+ε+λ

m
∑

j=i

(−1)(m−i)ε+(j−i)λ

41−i(1 + x2)1−i

(

2m
m− j

)(

i+ j − 1
2i− 1

)Q2nλ+ε+λ

P2jλ
.

Alternatively, we can also reformulate the fraction as

P2j(ε+λ+2nλ)

Pε+λ+2nλ
=

α2j(ε+λ+2nλ) − β2j(ε+λ+2nλ)

αε+λ+2nλ − βε+λ+2nλ

=

j−1
∑

i=0

(−1)i(1+ε+λ)
(

2j − i− 1
i

)(

αε+λ+2nλ + βε+λ+2nλ
)2j−2i−1

=

j
∑

i=1

(−1)(j−i)(1+ε+λ)
(

i+ j − 1
2i− 1

)(

αε+λ+2nλ + βε+λ+2nλ
)2i−1

from which we derive another double sum expression
n
∑

k=1

Q2m
ε+2kλ = n(−1)mε

(

2m
m

)

−

m
∑

j=1

(

2m
m− j

)

(−1)(m−j)ε

×

{

P2j(ε+λ)

P2jλ
−

Pε+λ+2nλ

P2jλ

j
∑

i=1

(−1)(j−i)(1+ε+λ)
(

i+ j − 1
2i− 1

)

Q2i−1
ε+λ+2nλ

}

.

This is equivalent to the following summation formula, whose special case corresponding to
ε = 0 and λ = 1 is due to Prodinger [7].

Theorem 12 (Representation in Pell–Lucas polynomials).
n
∑

k=1

Q2m
ε+2kλ = n(−1)mε

(

2m
m

)

−
m
∑

j=1

(−1)(m−j)ε
(

2m
m− j

)P2j(ε+λ)

P2jλ

+

m
∑

i=1

Q2i−1
ε+λ+2nλ

m
∑

j=i

(−1)(j−i)(1+λ)+(m−i)ε
(

2m
m− j

)(

i+ j − 1
2i− 1

)Pε+λ+2nλ

P2jλ
.

3.2. δ = 1 and λ ≡2 1. Replacing λ by 1 + 2λ, we may state the corresponding equation
displayed in Proposition 10 as

n
∑

k=1

Q1+2m
ε+2k+4kλ =

m
∑

j=0

(−1)(m−j)ε
(1 + 2m
m− j

)

{

Q(1+2j)(1+ε+2λ+2n+4nλ)

Q(1+2j)(1+2λ)
−

Q(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)

}

. (5)

In view of Lemma 2, the following equality holds

Q(1+2j)(1+ε+2λ+2n+4nλ)

Q1+ε+2λ+2n+4nλ
=
α(1+2j)(1+ε+2λ+2n+4nλ) + β(1+2j)(1+ε+2λ+2n+4nλ)

α1+ε+2λ+2n+4nλ + β1+ε+2λ+2n+4nλ

=

j
∑

i=0

(−1)(j−i)(1+ε)
(

i+ j
2i

)

(α− β)2iP 2i
1+ε+2λ+2n+4nλ

from which we establish the following summation theorem.
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Theorem 13 (Representation in Pell polynomials).

n
∑

k=1

Q2m+1
ε+2k+4kλ = Q1+ε+2λ+2n+4nλ

m
∑

i=0

P 2i
1+ε+2λ+2n+4nλ

m
∑

j=i

(

1 + 2m
m− j

)(

i+ j
2i

)

× (−1)(m−i)ε+j−i 4i(1 + x2)i

Q(1+2j)(1+2λ)
−

m
∑

j=0

(−1)(m−j)ε
(

1 + 2m
m− j

)Q(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)
.

Instead, applying Lemma 1, we get another expression

Q(1+2j)(1+ε+2λ+2n+4nλ) =α(1+2j)(1+ε+2λ+2n+4nλ) + β(1+2j)(1+ε+2λ+2n+4nλ)

=

j
∑

i=0

(−1)(j−i)ε 1 + 2j

1 + 2i

(

i+ j
2i

)

Q1+2i
1+ε+2λ+2n+4nλ

which leads to an alternative summation formula.

Theorem 14 (Representation in Pell–Lucas polynomials).

n
∑

k=1

Q2m+1
ε+2k+4kλ = −

m
∑

j=0

(−1)(m−j)ε
(

1 + 2m
m− j

)Q(1+2j)(1+ε+2λ)

Q(1+2j)(1+2λ)

+
m
∑

i=0

Q1+2i
1+ε+2λ+2n+4nλ

m
∑

j=i

(−1)(m−i)ε

Q(1+2j)(1+2λ)

(

1 + 2m
m− j

)1 + 2j

1 + 2i

(

i+ j
2i

)

.

Prodinger [7] found the cases corresponding to ε = 0, 1 and λ = 0.

3.3. δ = 1 and λ ≡2 0. Under the replacement λ → 2λ, the corresponding equation displayed
in Proposition 10 becomes

n
∑

k=1

Q2m+1
ε+4kλ =

m
∑

j=0

(−1)(m−j)ε
(

1 + 2m
m− j

)

{

P(1+2j)(ε+2λ+4nλ)

P2(1+2j)λ
−

P(1+2j)(ε+2λ)

P2(1+2j)λ

}

. (6)

According to Lemma 1, we have the equality

P(1+2j)(ε+2λ+4nλ) =
α(1+2j)(ε+2λ+4nλ) − β(1+2j)(ε+2λ+4nλ)

α− β

=

j
∑

i=0

(−1)(j−i)ε 1 + 2j

1 + 2i

( i+ j
2i

)

(α− β)2iP 1+2i
ε+2λ+4nλ

which yields the following summation theorem.

Theorem 15 (Representation in Pell polynomials).

n
∑

k=1

Q2m+1
ε+4kλ = −

m
∑

j=0

(−1)(m−j)ε
(

1 + 2m
m− j

)P(1+2j)(ε+2λ)

P2(1+2j)λ

+

m
∑

i=0

P 1+2i
ε+2λ+4nλ

m
∑

j=i

(−1)(m−i)ε4i(1 + x2)i

P2(1+2j)λ

(1 + 2m
m− j

)1 + 2j

1 + 2i

( i+ j
2i

)

.
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From Lemma 2, we also have the expression

P(1+2j)(ε+2λ+4nλ)

Pε+2λ+4nλ
=
α(1+2j)(ε+2λ+4nλ) − β(1+2j)(ε+2λ+4nλ)

αε+2λ+4nλ − βε+2λ+4nλ

=

j
∑

i=0

(−1)(j−i)(1+ε)
(

i+ j
2i

)

Q2i
ε+2λ+4nλ

which results in another summation formula.

Theorem 16 (Representation in Pell–Lucas polynomials).

n
∑

k=1

Q2m+1
ε+4kλ = −

m
∑

j=0

(−1)(m−j)ε
(

1 + 2m
m− j

)P(1+2j)(ε+2λ)

P2(1+2j)λ

+

m
∑

i=0

Q2i
ε+2λ+4nλ

m
∑

j=i

(−1)(m−i)ε+j−i
(1 + 2m
m− j

)( i+ j
2i

)Pε+2λ+4nλ

P2(1+2j)λ
.

4. Further Formulas for Odd Power Sums

The Pell and Pell–Lucas polynomials can be unified by introducing two extra parameters a
and c. They are defined by the recurrence relation

Gn(a, c, x) = 2xGn−1(a, c, x) +Gn−2(a, c, x) (7)

with the initial values being specified by

G0(a, c, x) = a and G1(a, c, x) = c. (8)

By employing the usual series manipulation (cf. [4, Section 1.13]), it is not difficult to derive
the generating function

∞
∑

k=0

Gk(a, c, x)y
k =

a+ (c− 2ax)y

1− 2xy − y2
=

c− 2ax+ aα

(α− β)(1− yα)
−

c− 2ax+ aβ

(α− β)(1− yβ)

and the explicit formula

Gn(a, c, x) =
uαn − vβn

α− β
with n ∈ N0 (9)

where u and v are two parameters determined by

u := c− 2ax+ aα and v := c− 2ax+ aβ. (10)

Then the Pell and Pell–Lucas polynomials are the following particular cases

Pn(x) = Gn(0, 1, x) and Qn(x) = Gn(2, 2x, x).

When x = 1/2, the odd power sums of Gn(a, c, 1/2) have recently been investigated by the
authors [2]. Following exactly the same procedure presented in that paper, we can further
establish the following summation theorems.
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Theorem 17 (Unified representation formula).
n
∑

k=1

G2m+1
2k (a, c, x) =

m
∑

i=0

G2i+1
2n+1(a, c, x) − c1+2i

4m−i(1 + x2)m−i

×

m
∑

k=i

(

1 + 2m
m− k

)1 + 2k

1 + 2i

(

k + i
2i

)(a2 + 2acx− c2)m−i

G2k+1(2, 2x, x)
.

Theorem 18 (Unified representation formula).
n
∑

k=1

G2m+1
2k−1 (a, c, x) =

m
∑

i=0

G2i+1
2n (a, c, x) − a2i+1

4m−i(1 + x2)m−i

×

m
∑

k=i

(

1 + 2m
m− k

)1 + 2k

1 + 2i

(

k + i
2i

)(c2 − 2acx− a2)m−i

G2k+1(2, 2x, x)
.

When “a = 0, c = 1” and “a = 2, c = 2x”, these formulas agree with those displayed in
Theorems 6 and 14 specified with ε = 0, 1 and λ = 0.

However, we have failed to derive similar results for even power sums.
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