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Abstract. We consider Dirichlet series generated by weighted Stirling numbers, focusing
on a symmetry of such series which is reminiscent of a duality relation of negative-order
poly-Bernoulli numbers. These series are connected to several types of zeta functions and
this symmetry plays a prominent role. We do not know whether there are combinatorial
explanations for this symmetry, as there are for the related poly-Bernoulli identity.

1. Introduction

This paper is concerned with the Dirichlet series

Sj,r(s, a) =
∞∑

m=j

(−1)m+js(m, j|r)
m!(m+ a)s

(1.1)

where s(m, j|r) denotes the weighted Stirling number of the first kind [4, 5] defined for non-
negative integers m, j and r ∈ C by the vertical generating function

(1 + t)−r(log(1 + t))j = j!
∞∑

m=j

s(m, j|r) t
m

m!
(1.2)

or by the horizontal generating function

(x)m =
m∑
j=0

s(m, j|r)(x+ r)j (1.3)

where (x)m = x(x−1) · · · (x−m+1) denotes the falling factorial. If j is a nonnegative integer,
Sj,r(s, a) converges for r, s, a ∈ C such that <(s) > <(r) and <(a) > −j; when r ∈ Z+ it has
poles of order j + 1 at s = 1, 2, .., r and of order at most j at nonpositive integers s. When
j = 0 we recover the Barnes multiple zeta functions, and when j = 1 we obtain special values
of non-strict multiple zeta functions, also known as zeta-star values (see section 3). We will
focus on the symmetric identity

Sj,r(k + 1, 1− t) = Sk,t(j + 1, 1− r), (1.4)

valid for integers r ≤ k and t ≤ j, which bears a striking resemblance to a symmetric identity
of poly-Bernoulli polynomials (Theorem 6.1 below). Since this poly-Bernoulli identity has
known combinatorial interpretations in the case where r = t = 0, we find it interesting to ask
whether the symmetry (1.4) may be proved or interpreted in terms of counting arguments.

2. Stirling and r-Stirling numbers

The weighted Stirling numbers of the first kind s(n, k|r) may be defined by either (1.2) or
(1.3), or by the recursion

s(n+ 1, k|r) = s(n, k − 1|r)− (n+ r)s(n, k|r) (2.1)
205
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with initial conditions s(n, n|r) = 1, s(n, 0|r) = (−r)n. Their dual companions [8] are the
weighted Stirling numbers of the second kind S(n, k|r) [4, 5] which may be defined by the
vertical generating function

ert(et − 1)m = m!

∞∑
n=m

S(n,m|r) t
n

n!
, (2.2)

the horizontal generating function

xn =

n∑
k=0

S(n, k|r)(x− r)k, (2.3)

or by the recursion

S(n+ 1, k|r) = S(n, k − 1|r) + (k + r)S(n, k|r) (2.4)

with initial conditions S(n, n|r) = 1, S(n, 0|r) = rn. It is clear that both s(n, k|r) and S(n, k|r)
are polynomials in r with integer coefficients of degree n− k whose derivatives are given by

s′(n, k|r) = (k + 1)s(n, k + 1|r) and S′(n, k|r) = nS(n− 1, k|r). (2.5)

For combinatorial interpretations, when the “weight” r is a nonnegative integer we may
write

(−1)m+js(m, j|r) =

[
m+ r

j + r

]
r

(2.6)

in terms of r-Stirling numbers
[
n
k

]
r
, which count the number of permutations of {1, 2, ..., n}

having k cycles, with the elements 1, 2, ..., r restricted to appear in different cycles [3, 1].
When r = 0 these definitions reduce to those of the usual Stirling numbers, and in that case
the parameter r is often suppressed in the notation. Furthermore if j = 1 and r ≥ 0 the

coefficients (−1)m+1s(m, 1|r)/m! are called hyperharmonic numbers H
[r]
m defined by H

[0]
m = 1

m

for m > 0, H
[r]
0 = 0, and

H [r]
m =

m∑
i=1

H
[r−1]
i (2.7)

(cf. [1, 14, 9]). Thus Hn = H
[1]
n denotes the usual harmonic number.

3. Dirichlet series Identities

Our interest in the series (1.1) is derived from the fact that they specialize to known multiple
zeta functions when j = 0, 1. First, the series S0,1(s, 1) is the Riemann zeta function ζ(s);
more generally for r ∈ Z+ the series S0,r(s, a) is a Barnes multiple zeta function ζr(s, a) [15, 16]
defined for <(s) > r and <(a) > 0 by

ζr(s, a) =

∞∑
t1=0

· · ·
∞∑

tr=0

(a+ t1 + · · ·+ tr)
−s. (3.1)

If we view ζr(s, a) as an analytic function of its order r as in [15, 16], then we can view

Sj,r(s, a) = j!Dj
rζr(s, a) by means of (2.5), where Dr denotes the derivative d/dr. From this

identification we deduce from ([16], Corollary 2) that the series Sj,r(s, a) is convergent when
<(s) > <(r) and <(a) > −j.
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For r ∈ Z+ the series S1,r(s, 0) is also a specialization of a non-strict multiple zeta function,
namely S1,r(s, 0) = ζ?(s, 0, ..., 0︸ ︷︷ ︸

r−1

, 1), where

ζ?(s1, ..., sm) :=
∑

n1≥n2≥···≥nm≥1

1

ns11 n
s2
2 · · ·n

sm
m

(3.2)

([9], Prop. 2.1). The zeta-star values are related to Arakawa-Kaneko zeta functions, whose

values at negative integers are given by the poly-Bernoulli numbers B(k)
n ([9, 6]).

The series (1.1) satisfies several identities.

Theorem 3.1. The following identities hold where defined.

i. We have Sj,r(s, a) = Sj,r(s, a+ 1) + Sj,r−1(s, a).
ii. For r ∈ Z+ we have Sj,r(s, a) = Sj,0(s, a) +

∑r
t=1 Sj,t(s, a+ 1).

iii. For 0 ≤ m ≤ r we have Sj,r(s, a) =
∑m

t=0

(
m
t

)
Sj,r−t(s, a+m− t).

iv. We have

Sj,r(s, a)− aSj,r(s+ 1, a) = Sj−1,r+1(s+ 1, a+ 1) + rSj,r+1(s+ 1, a+ 1).

v. (Symmetry relation.) For integers r ≤ k and t ≤ j we have

Sj,r(k + 1, 1− t) = Sk,t(j + 1, 1− r).

Thus when it converges, the series Sj,r(k + 1, 1 − t) is invariant under (j, k, r, t) 7→
(k, j, t, r).

Proof. Identity (i) follows from the Stirling number recurrence (2.1), or equivalently from the
difference equation

ζr(s, a)− ζr(s, a+ 1) = ζr−1(s, a) (3.3)

([15], eq. (2.1)) of the Barnes multiple zeta functions. Identities (ii) and (iii) may be obtained
by induction from (i), or from Identity 5 and Identity 7 in [1]. To obtain (iv), we differentiate
the generating function (1.2) with respect to r and equate coefficients of tn/n! to obtain

s(n+ 1, j|r) = s(n, j − 1|r + 1)− r s(n, j|r + 1). (3.4)

Dividing by (n+ 1)!(n+ a)s and summing over n then yields (iv). By means of (2.5) we have

Sj,r(s, a) = j!Dj
rζr(s, a), and therefore the symmetry relation (v) follows from the identity

(k − 1)!Dj−1
t ζt(k, 1− r) = (j − 1)!Dk−1

r ζr(j, 1− t) (3.5)

([16], Corollary 2). �

4. Combinatorial interpretation

Restricting our attention to the case where r is a nonnegative integer, the symmetry relation
Theorem 3.1(v) may be written as

∞∑
m=j

[
m+ r

j + r

]
r

m!(m+ 1− t)k+1
=

∞∑
m=k

[
m+ t

k + t

]
t

m!(m+ 1− r)j+1
(4.1)

for integers 0 ≤ r ≤ k and 0 ≤ t ≤ j, where the r-Stirling number
[
n
k

]
r

= the number of
permutations of {1, 2, ..., n} having k cycles, with the elements 1, 2, ..., r restricted to appear
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in different cycles. When r, t ∈ {0, 1} this gives series identities for the usual Stirling numbers
of the first kind; for example, in

∞∑
m=j

[
m

j

]
m!(m+ 1)k+1

=

∞∑
m=k

[
m

k

]
m!(m+ 1)j+1

(4.2)

we have
[
m
k

]
/m! equal to the proportion of permutations of {1, ...,m} which have k cycles.

Thus the left side of (4.2) may be viewed as a sum over permutations which have j cycles and
the right side as a sum over permutations which have k cycles.

Question 1: Can the identities (4.2) or (4.1) be proved by combinatorial means?

5. Values at positive integers

The identities of section 3 may be used to demonstrate a large class of values of Sj,r(s, a)
which may be expressed as polynomials in values of the Riemann zeta function.

Theorem 5.1. When j ∈ {0, 1} or s ∈ {1, 2} we have Sj,r(s, a) ∈ Q[ζ(2), ζ(3), ζ(5), ...] for
integers r < s and a > −j.

Proof. Write R = Q[ζ(2), ζ(3), ζ(5), ...]. When j = 0 and r ≤ 0 the sum for Sj,r(s, a) is finite,
and therefore rational, so the theorem is therefore true in that case. For j = 0 and r > 0 we
have S0,r(s, a) = ζr(s, a) and we use the identity

ζr(s, a) =
1

(r − 1)!

r−1∑
k=0

s(r − 1, k|a+ 1− r) ζ1(s− k, a) (5.1)

([16], eq. (3.3)) to prove the theorem in that case, since ζ1(s, a) ∈ R for integers s > 1 and
a > 0. The theorem is therefore established for j = 0.

In the case j = 1 the theorem generalizes Euler’s classical identity

S1,1(s, 0) =

∞∑
n=1

Hn

ns
=
s+ 2

2
ζ(s+ 1)− 1

2

s−2∑
j=1

ζ(s− j)ζ(j + 1) ∈ R. (5.2)

Kamano [9] proved that

(r − 1)!S1,r(s, 0) =
r∑

k=1

[ r
k

]
S1,1(s, 0) +

(
k

[
r

k + 1

]
−
[ r
k

]
Hr−1

)
ζ(s+ 1− k) (5.3)

which, together with (5.2), implies that S1,r(s, 0) ∈ R when r > 0. (Alternatively one can use
the recursion

S1,r(s, 0) = S1,1(s, 0) +

r−1∑
k=1

1

k
(S1,k(s− 1, 0) +B(k, s)) (5.4)

([14], Theorem 6), where B(k, s) is a linear polynomial in {ζ(j)}m≥2, to show this). When
j = 1 and r = 0 we observe that S1,0(1, a) = Ha/a ∈ Q for a ∈ Z+; induction using Theorem
3.1(iv) then shows S1,0(s, a) ∈ R for all s > r and a ≥ 0. So S1,r(s, a) ∈ R when either a = 0
or r = 0; an induction argument using Theorem 3.1(i) shows that S1,r(s, a) ∈ R when r ≥ 0
and a ≥ 0.

A similar induction argument, using Theorem 3.1(i) and (iv), shows that S1,r(s, a) ∈ R for
a ≥ 0 when r is a negative integer and s > r. This completes the proof of the theorem for
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j ∈ {0, 1}. The statement concerning s ∈ {1, 2} then is obtained by the symmetry relation
Theorem 3.1(v). �

6. Poly-Bernoulli polynomials

In this final section we prove a finite sum symmetric identity which bears a striking re-
semblance to the infinite sum symmetric identity of Theorem 3.1(v). The weighted shifted

poly-Bernoulli numbers B(k)
n (a, r) of order k are defined by

Φ(1− e−t, k, a)e−rt =

∞∑
n=0

B(k)
n (a, r)

tn

n!
(6.1)

where Φ(z, s, a) =

∞∑
m=0

zm

(m+ a)s
(|z| < 1) (6.2)

is the Lerch transcendent. (The generalization (6.1) was communicated to me by Mehmet
Cenkci, to whom I am grateful). When a = 1 and r = 0 we obtain the usual poly-Bernoulli

numbers B(k)
n = B(k)

n (1, 0) defined and studied by Kaneko [10], since in that case the Lerch
transcendent reduces to the usual order k polylogarithm function

Lik(z) =

∞∑
m=1

zm

mk
. (6.3)

The B(k)
n (a, r) are polynomials of degree n in r and they are polynomials of degree −k in a

when −k ∈ Z+. When k = 1 and a = 0 we have

B(1)
n (0, r) = (−1)nBn(r) (6.4)

in terms of the usual Bernoulli polynomials Bn(x). The weighted Lerch poly-Bernoulli numbers
may also be expressed in terms of weighted Stirling numbers of the second kind as

B(k)
n (a, r) = (−1)n

n∑
m=0

(−1)mm!S(n,m|r)
(m+ a)k

. (6.5)

Therefore in the case r = 0 these polynomials agree with the shifted poly-Bernoulli numbers
of ([12], §6). The weighted shifted poly-Bernoulli polynomials satisfy the following symmetric
identity.

Theorem 6.1. For all nonnegative integers n and k we have

B(−k)
n (1− t, r) = B(−n)

k (1− r, t).
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Proof. This result was proved by Kaneko [10] in the case r = 0, t = 0, and the proof is adapted
from Kaneko’s proof. Straightforward calculation shows that

∞∑
k=0

∞∑
n=0

B(−k)
n (1− a, x)

tn

n!

uk

k!
=

∞∑
k=0

Φ(1− e−t,−k, 1− a)e−xt
uk

k!

=
∞∑
k=0

∞∑
m=0

(1− e−t)me−xtuk

(m+ 1− a)−kk!

= e−xt
∞∑

m=0

(1− e−t)me(m+1−a)u

= e−xte(1−a)u
∞∑

m=0

((1− e−t)eu)m

=
e−xte(1−a)u

1− (1− e−t)eu

=
e(1−x)te(1−a)u

et + eu − et+u
(6.6)

is invariant under (t, u, a, x) 7→ (u, t, x, a).
�

This theorem says that the expression B(−k)
n (1 − t, r) is a polynomial in r and t which is

invariant under (n, k, r, t) 7→ (k, n, t, r). In terms of weighted Stirling numbers it reads

n∑
m=0

(−1)m+nm!S(n,m|r)(m+ 1− t)k =
k∑

m=0

(−1)m+km!S(k,m|t)(m+ 1− r)n. (6.7)

We find this identity to be strikingly similar to the symmetric identity, for r ≤ k and t ≤ j,
∞∑

m=j

(−1)m+js(m, j|r)
m!(m+ 1− t)k+1

=
∞∑

m=k

(−1)m+ks(m, k|t)
m!(m+ 1− r)j+1

, (6.8)

given by Theorem 3.1(v). The two identities appear to share a kind of duality, but it is curious
that one identity is for finite sums and the other is for infinite series.

In the case r = t = 0, the poly-Bernoulli numbers B(−k)
n have found at least two important

combinatorial interpretations. In [2] it is shown that B(−k)
n equals the number of distinct n×k

lonesum matrices, where a lonesum matrix is a matrix with entries in {0, 1} which is uniquely
determined by its row and column sums. In [13] it is shown that the number of permutations
σ of the set {1, 2, ..., n + k} which satisfy −k ≤ σ(i) − i ≤ n for all i is the poly-Bernoulli

number B(−k)
n . Either of these two combinatorial interpretations make the r = t = 0 case of

the symmetry relation of Theorem 6.1 obvious.

Question 2. Can the symmetric identity of Theorem 6.1 be proved by a counting argument
in cases where r and t are nonzero integers?
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