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Abstract. A positive linear recurrence sequence is of the form Hn+1 = c1Hn + · · · +
cLHn+1−L with each ci ≥ 0 and c1cL > 0, with appropriately chosen initial conditions.
There is a notion of a legal decomposition (roughly, given a sum of terms in the sequence we
cannot use the recurrence relation to reduce it) such that every positive integer has a unique
legal decomposition using terms in the sequence; this generalizes the Zeckendorf decompo-
sition, which states any positive integer can be written uniquely as a sum of non-adjacent
Fibonacci numbers. Previous work proved not only that a decomposition exists, but that
the number of summands Kn(m) in legal decompositions of m ∈ [Hn, Hn+1) converges to a
Gaussian. Using partial fractions and generating functions it is easy to show the mean and
variance grow linearly in n: an + b + o(1) and Cn + d + o(1), respectively; the difficulty is
proving a and C are positive. Previous approaches relied on delicate analysis of polynomials
related to the generating functions and characteristic polynomials, and is algebraically cum-
bersome. We introduce new, elementary techniques that bypass these issues. The key insight
is to use induction and bootstrap bounds through conditional probability expansions to show
the variance is unbounded, and hence C > 0 (the mean is handled easily through a simple
counting argument).

1. Introduction

There are many ways to define the Fibonacci numbers. An equivalent approach to the
standard recurrence relation, where Fn+1 = Fn + Fn−1 and F1 = 1 and F2 = 2, is that they
are the unique sequence of integers such that every positive number can be written uniquely
as a sum of non-adjacent terms. This expansion is called the Zeckendorf decomposition [25],
and much is known about it. In particular, the distribution of the number of summands
of m ∈ [Fn, Fn+1) converges to a Gaussian as n → ∞, with mean and variance growing
linearly with n. Similar results hold for a large class of sequences which have a notion of legal
decomposition leading to unique decomposition; see [1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 20, 21, 22, 23, 24].

Given a sequence {Hn}, one can frequently prove that the mean and the variance of the
number of summands of m ∈ [Hn, Hn+1) grows linearly with n. Explicitly, there are constants
a, b, C and d such that the mean is an + b + o(1) and the variance is Cn + d + o(1). The
difficulty is proving that a and C are positive, which is needed for the proofs of Gaussian
behavior. Until recently, the only approaches have been technical and involved generating
functions, partial fraction expansions and generalized Binet formulas applied to polynomials
associated to the characteristic polynomials of the sequence, which have required a lot of work
to show the leading terms are positive for such recurrences. The point of this work is to bypass
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these arguments through elementary counting. We concentrate on positive linear recurrence
sequences (defined below) to highlight the main ideas of the method; with additional work
these arguments can be extended to more general sequences (see [6]). In addition to the
arguments below, one can also obtain similar results (though not as elementarily) through
Markov chains [2] or through an analysis of two dimensional recurrences [19].

Definition 1.1. A sequence {Hn}∞n=1 of positive integers is a Positive Linear Recurrence
Sequence (PLRS) if the following properties hold.

(1) Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L,

with L, c1 and cL positive.
(2) Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1.

We define the size of {Hn} to be c1 + · · ·+ cL and the length of {Hn} to be L.

Definition 1.2. Let {Hn} be a PLRS. A decomposition
∑m

i=1 aiHm+1−i of a positive integer
ω (and the sequence {ai}mi=1) is legal if a1 > 0, the other ai ≥ 0, and one of the following two
conditions holds.

• Condition 1: We have m < L and ai = ci for 1 ≤ i ≤ m.
• Condition 2: There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs,

and {bi}m−si=1 (with bi = as+i) is legal.

If
∑m

i=1 aiHm+1−i is a legal decomposition of ω, we define the number of summands (of
this decomposition of ω) to be a1 + · · ·+ am.

Furthermore, we define two types of blocks, where a block is a nonempty ordered subset of
the coefficients [ai, ai+1, . . . , ai+j ] inclusive:

• a Type 1 block corresponds to Condition 1, and has length m < L and size ai + · · ·+
ai+m−1,
• a Type 2 block corresponds to Condition 2, and has length s ≤ L and size ai + · · ·+
ai+s−1.

Remark 1.3. A Type 2 block has three key properties.

• A legal decomposition of ω stays legal if a Type 2 block is inserted (between Type 1
and/or 2 blocks) or removed and indices are shifted appropriately.
• If we know the size of a Type 2 block, the block’s content and its length are uniquely

determined. So we can define a length function `(t) to be the length of a Type 2
block with size t.
• A Type 2 block always has nonnegative size and strictly positive length. Specifically,

consider a Type 2 block with size 0. Then, in Condition 2, we always have a1 = 0 < c1,
so s = 1. Thus a Type 2 block with size 0 has length 1. In other words, `(0) = 1 holds
for all PLRS.

If a legal decomposition contains a Type 1 block, then it must be the last block. Thus any
legal decomposition contains at most one Type 1 block. A Type 1 block, according to Condition
1, always has positive size and positive length.

The following two examples clarify the above.
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Example 1.4. The Fibonacci Sequence (size 2 and length 2).
Type 1 block: [1].
Type 2 blocks: [0], [1 0].
An example of a legal decomposition: F5 + F3 + F1 with block representation: [1 0] [1 0] [1].
After removing the second to last block, the new block representation is [1 0] [1].
The resulting legal decomposition is F3 + F1.

Example 1.5. PLRS sequence Hn = 2Hn−1 + 2Hn−2 + 0 + 2Hn−4 (size 6 and length 4).
Type 1 blocks: [2], [2 2], [2 2 0].
Type 2 blocks: [0], [1], [2 0], [2 1], [2 2 0 0], [2 2 0 1].
An example of a legal decomposition: H7 + 2H4 + H1 with block representation: [1] [0] [0]
[2 0] [0] [1].
After removing the second to last block, the new block representation is [1] [0] [0] [2 0] [1].
The resulting legal decomposition is H6 + 2H3 + H1.

Before we state our main result we first set some notation.

Definition 1.6. Let {Hn} be a Positive Linear Recurrence Sequence. For each n, let the
discrete outcome space Ωn be the set of legal decompositions of integers in [Hn, Hn+1). By
the Generalized Zeckendorf Theorem (see for example [22]) every integer has a unique legal
decomposition, so |Ωn| = Hn+1 −Hn. Define the probability measure on subsets of Ωn by

Pn(A) =
∑
ω∈A
ω∈Ωn

1

Hn+1 −Hn
, A ⊂ Ωn;

thus each of the Hn+1 − Hn legal decompositions is weighted equally. We define the random
variable Kn by setting Kn(ω) equal to the number of summands of ω ∈ Ωn. When n > 2L (so
there are at least three blocks) we define the random variable Zn by setting Zn(ω) equal to the
size of the second to last block of ω ∈ Ωn. Note that the second to last block must be a Type
2 block. Finally, we define the random variable Ln by setting Ln(ω) equal to the length of the
second to last block of ω ∈ Ωn; i.e., Ln(ω) = `(Zn(ω)).

As remarked above, previous work has shown that E[Kn] = an + b + f(n) where a > 0 and
f(n) = o(1); this can be proved through very simple counting arguments (see [6]). While it is
also known that Var[Kn] = Cn + d + o(1), previous approaches could not easily show C 6= 0.
We elementarily prove C > 0 by giving a positive lower bound c for it.

Theorem 1.7. Let {Hn} be a positive linear recurrence sequence with size S and length L.
Then there is a c > 0 such that Var[Kn] ≥ cn for all n > L.

We sketch the proof. We can remove the second to last block of a legal decomposition to
get a shorter legal decomposition, forming relations between longer legal decompositions and
shorter legal decompositions. We then use strong induction and conditional probabilities to
prove the theorem.

Remark 1.8. As it is known that Var[Kn] = Cn + d + o(1), to prove that C > 0 it would
suffice to show limn→∞Var[Kn] diverges to infinity. Unfortunately the only elementary proofs
we could find of this also establish the correct growth rate; we would be very interested in
seeing an approach that yielded (for example) Var[Kn]� log n (which would then immediately
improve to implying C > 0).
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2. Lemmas derived from Expectation

We first determine a relationship between Kn and Zn. Then, with the help of E[Kn] =
an + b + f(n), we explain how to explicitly determine the positive lower bound c. In the
arguments below note `(t) and Hn+1 −Hn are increasing respectively with t and n.

Lemma 2.1. Let n > 2L. For all 0 ≤ t < S, we define St := {ω ∈ Ωn|Zn(ω) = t}, and
ht(ω) to be the decomposition after removing the second to last block of ω. (When we remove
the second to last block with size t, we completely remove that block from ω and shift all the
indices to the left of that block by `(t).) When we remove the second to last block (a Type 2
block) from ω, then ht(ω) is legal and ht is a bijection between St and Ωn−`(t).

Proof. Let ω ∈ Ωn be arbitrary and consider ht(ω). Since the block we remove has size t and
thus length `(t), ht(ω) must be in Ωn−`(t).

Next, consider ω, ω′ ∈ St, such that ht(ω) = ht(ω
′). As the size determines the composition

for Type 2 blocks, we are removing the same block at the same position for ω, ω′. This implies
ω = ω′.

Finally, for any ω ∈ Ωn−`(t), if we insert the size t type 2 block before its last block, we get
a legal decomposition in Ωn. Thus ht is surjective.

Therefore, ht is a bijection between St and Ωn−`(t). �

Corollary 2.2. We have

P[Zn = t] =
|St|
|Ωn|

=
|Ωn−`(t)|
|Ωn|

=
Hn−`(t)+1 −Hn−`(t)

Hn+1 −Hn
.

Remark 2.3. As

P[Zn = 0] ≥ P[Zn = 1] ≥ · · · ≥ P[Zn = S − 1] (2.1)

and the sum of these S terms is 1, we have

P[Zn = 0] ≥ 1

S
, (2.2)

(which is the consequence we need below).

For an arbitrary ω ∈ St, the second to last block has size Zn = t, and the remaining blocks
form a legal decomposition in Ωn−`(t) with size Kn−`(t)(ht(ω)), so Kn(ω) = Kn−`(t)(ht(ω)) + t.
Since h is a bijection, we have the following two equations:

E[Kn|Zn = t] = E[Kn−`(t) + t]

= a(n− `(t)) + b + f(n− `(t)) + t,
(2.3)

and

E[K2
n|Zn = t] = E[(Kn−`(t) + t)2]

= E[K2
n−`(t) + 2tKn−`(t) + t2]

= E[K2
n−`(t)] + 2tE[Kn−`(t)] + t2

= E[K2
n−`(t)] + 2t[a(n− `(t)) + b + f(n− `(t))] + t2.

(2.4)
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Furthermore, by (2.3) we have

E[Kn] =

S−1∑
t=0

P[Zn = t] · E[Kn|Zn = t]

=
S−1∑
t=0

P[Zn = t] · [a(n− `(t)) + b + f(n− `(t)) + t]

= an + b +
S−1∑
t=0

P[Zn = t] · [t + f(n− `(t))− a`(t)]

= an + b + f(n),

(2.5)

where the last equality comes from the definition of f(n).
If we set Yn(ω) := Zn(ω) + f(n− Ln(ω))− aLn(ω), then we have

E[Yn] =

S−1∑
t=0

P[Zn = t] · [t + f(n− `(t))− a`(t)] = f(n). (2.6)

Now that we have E[Yn], we use it to estimate Var[Yn].

Lemma 2.4. For n sufficiently large we have

Var[Yn] >
a2

2S
. (2.7)

Proof. First, for all n > 2L we have

Var[Yn] = E[Y 2
n ]− (E[Yn])2

=
(
E[(Zn − aLn + f(n− Ln))2]

)
− (f(n))2

=
(
E[(Zn − aLn)2] + E[2(Zn − aLn) · f(n− Ln)] + E[f(n− Ln)2]

)
− (f(n))2 .

Note that Zn − aLn is bounded since −aL ≤ Zn − aLn ≤ S for all n > 2L. Also we know
f(n) = o(1), so f(n− Ln) = o(1) since Ln ≤ L. Hence the following three limits are all zero:

lim
n→∞

E[2(Zn − aLn) · f(n− Ln)] = lim
n→∞

E[f(n− Ln)2] = lim
n→∞

(f(n))2 = 0. (2.8)

Further, we know

Var[Yn]− E[(Zn − aLn)2] = E[2(Zn − aLn) · f(n− Ln)] + E[f(n− Ln)2]− (f(n))2 , (2.9)

so

lim
n→∞

(
Var[Yn]− E[(Zn − aLn)2]

)
= 0. (2.10)

On the other hand, for all n > 2L we have

E[(Zn − aLn)2] =

S−1∑
t=0

P[Zn = t] · (t− a`(t))2

≥ P[Zn = 0] · (0− a`(0))2

≥ a2

S
,

(2.11)

where the last inequality follows from (2.2).

DECEMBER 2017 139



THE FIBONACCI QUARTERLY

By (2.10), we know there must exist N > 2L such that for all n > N ,∣∣Var[Yn]− E[(Zn − aLn)2]
∣∣ < a2

2S
, (2.12)

so Var[Yn]− E[(Zn − aLn)2] > − a2

2S . Then, by (2.11), we get Var[Yn] > a2

2S for all n > N . �

Finally, we choose c. Let

c = min

{
Var[KL+1]

L + 1
,

Var[KL+2]

L + 2
, . . . ,

Var[KN ]

N
,

a2

2SL

}
, (2.13)

Where N is as determined in Lemma 2.4. For all n > L, Hn+1−Hn > 1, so there are at least
two integers in [Hn, Hn+1). Since the legal decomposition of Hn has only one summand while
that of Hn + 1 has two summands, Var[Kn] is nonzero when n > L. Hence, c > 0. In the next
section we show Var[Kn] ≥ cn for all n > L.

3. A lower bound for the Variance

We prove Theorem 1.7 by strong induction. While the algebra is long, the main idea is easily
stated: we condition based on how many summands are in the second to last block, which
must be a type 2 block, and then use conditional probability arguments (inputting results for
the mean and smaller cases) to compute the desired quantities

Proof. The base cases n = L + 1, L + 2, . . . , N are automatically true by the way we choose
c. Hence, we only need to consider the cases when n > N . In the induction hypothesis, we
assume Var[Kr] ≥ cr for L < r < n. In the inductive step, we prove Var[Kn] ≥ cn where
n > N .

For L < r < n, we have Var[Kr] ≥ cr and E[Kr] = ar + b + f(r), hence

E[K2
r ] = Var[Kr] + (E[Kr])

2

≥ cr + (ar + b + f(r))2

= cr + a2r2 + b2 + (f(r))2 + 2arb + 2arf(r) + 2bf(r).

(3.1)

By (2.4), we have

E[K2
n] =

S−1∑
t=0

P[Zn = t] · E[K2
n|Zn = t]

=

S−1∑
t=0

P[Zn = t] ·
(
E[K2

n−`(t)] + 2t[a(n− `(t)) + b + f(n− `(t))] + t2
)
.

Note we only need to consider n > N > 2L, so n > n− `(t) ≥ n−L > L for all 0 ≤ t ≤ S− 1.
Hence, by (3.1),

E[K2
n−`(t)] ≥ c(n− `(t)) + a2(n− `(t))2 + b2 + [f(n− `(t))]2 + 2a(n− `(t))b

+ 2a(n− `(t))f(n− `(t)) + 2bf(n− `(t)).

After we replace E[K2
n−`(t)] in the conditional expectation E[K2

n|Zn = t] with this lower bound,

any term either does not depend on t or can be combined with other terms to form (t+ f(n−
`(t)) − a`(t)). The final equation will then have two parts, one of which does not depend on
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t, while the other can be written in the form of Zn + f(n − Ln) − aLn, which is exactly Yn.
We find

E[K2
n] ≥

S−1∑
t=0

P[Zn = t] ·

[
c(n− `(t)) + a2(n− `(t))2 + b2 + [f(n− `(t))]2 + 2a(n− `(t))b

+ 2a(n− `(t))f(n− `(t)) + 2bf(n− `(t)) + 2t[a(n− `(t)) + b + f(n− `(t))] + t2

]

=

S−1∑
t=0

P[Zn = t] ·

[
c(n− `(t)) + a2(n− `(t))2 + b2 + [f(n− `(t))]2 + 2a(n− `(t))b

+ 2a(n− `(t))f(n− `(t)) + 2bf(n− l(t)) + [2tan− 2ta`(t) + 2tb + 2tf(n− `(t))] + t2

]

= (an + b)2 + cn +

S−1∑
t=0

P[Zn = t] ·

[
− c`(t)− 2a2n`(t) + a2(`(t))2 + [f(n− `(t))]2

− 2a`(t)b + 2anf(n− `(t))− 2a`(t)f(n− `(t)) + 2bf(n− `(t)) + 2tan− 2ta`(t) + 2tb

+ 2tf(n− `(t)) + t2

]

= (an + b)2 + cn +

S−1∑
t=0

P[Zn = t] ·

[ [
a2(`(t))2 + [f(n− `(t))]2 + t2 − 2a`(t)f(n− `(t))− 2ta`(t)

+ 2tf(n− `(t))] + 2an [t + f(n− `(t))− a`(t)] + 2b (t + f(n− `(t))− a`(t))− c`(t)

]

= (an + b)2 + cn +

S−1∑
t=0

P[Zn = t] ·

[
[t + f(n− `(t))− a`(t)]

2

+ 2(an + b) (t + f(n− `(t))− a`(t))− c`(t)

]

= (an + b)2 + cn +

S−1∑
t=0

P[Zn = t] · (t + f(n− `(t))− a`(t))
2

+ 2(an + b)

S−1∑
t=0

P[Zn = t] · (t + f(n− `(t))− a`(t))− c

S−1∑
t=0

P[Zn = t] · `(t)

= (an + b)2 + cn + E[(Zn + f(n− Ln)− aLn)2] + 2(an + b)f(n)− cE[Ln],

where the last equality comes from (2.6).

We already know (E[Kn])2 = (an+ b+ f(n))2 = (an+ b)2 + 2(an+ b)f(n) + (f(n))2, hence

Var[Kn]− cn = E[K2
n]− (E[Kn])2 − cn

≥ E[(Zn + f(n− Ln)− aLn)2]− cE[Ln]− (f(n))2

= E[Y 2
n ]− cE[Ln]− (E[Yn])2

= Var[Yn]− cE[Ln]

≥ Var[Yn]− cL

≥ 0,

where the last inequality comes from our definition of c and (2.7).
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Therefore, Var[Kn] ≥ cn for all n > L. In other words, if Var[Kn] = Cn + d + o(1), then
C ≥ c > 0. �
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