DIFFERENCES OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDERS 2, 3, AND 4

THOMAS KOSHY

ABSTRACT. We present the extended gibonacci polynomial family; and then investigate the differences of some special gibonacci products of orders 2, 3, and 4, and their polynomial and numeric implications to the Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev subfamilies.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary complex variable; $a(x), b(x), z_0(x)$, and $z_1(x)$ are arbitrary complex polynomials; and $n \ge 0$ [5, 6].

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials, denoted by $f_n(x), l_n(x), p_n(x), q_n(x), J_n(x)$, and $j_n(x)$, belong to the gibonacci family $\{z_n(x)\}$; their numeric counterparts are denoted by F_n, L_n, P_n, Q_n, J_n , and j_n , respectively. Vieta and Vieta-Lucas polynomials V_n and v_n , and Chebyshev polynomials $T_n(x)$ and $U_n(x)$ also belong to the same family [5, 6].

1.1. Relationships Among the Subfamilies. By virtue of the relationships in Table 1, every ginonacci result has a Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev counterpart, where $i = \sqrt{-1}$ [5, 6].

$$J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x}) \qquad \qquad j_n(x) = x^{n/2} l_n(1/\sqrt{x})$$
$$V_n(x) = i^{n-1} f_n(-ix) \qquad \qquad v_n(x) = i^n l_n(-ix)$$
$$V_n(x) = U_{n-1}(x/2) \qquad \qquad v_n(x) = 2T_n(x/2).$$

Table 1: Links Among the Gibonacci Subfamilies

In the interest of brevity, clarity, and convenience, we *omit* the argument in the functional notation, when there is no ambiguity; so g_n will mean $g_n(x)$. Again, for brevity, we let $g_n = f_n$ or l_n ; $b_n = p_n$ or q_n ; $c_n = J_n(x)$ or $j_n(x)$; $d_n = V_n$ or v_n ; and $e_n = T_n$ or U_n ; and correspondingly, we let $G_n = F_n$ or L_n ; $B_n = P_n$ or Q_n ; and $C_n = J_n$ or j_n . We also *omit* a lot of basic algebra.

Again for brevity and convenience, we let

$$\gamma = \begin{cases} 1, & \text{if } G_n = F_n, \\ 2, & \text{if } G_n = L_n; \end{cases} \\ \kappa = \begin{cases} 1, & \text{if } B_n = P_n, \\ 3, & \text{if } B_n = Q_n; \end{cases} \\ \nu = \begin{cases} 1, & \text{if } C_n = J_n, \\ 5, & \text{if } C_n = j_n; \\ \text{and } \Delta = \sqrt{x^2 + 4}. \end{cases}$$

We can develop an explicit Binet-like formula for g_n . To this end, we need the following result; its proof is straightforward, so we omit it.

Lemma 1.1. Let g_n denote the nth gibonacci polynomial. Then $g_n = af_{n-2} + bf_{n-1}$, where $n \ge 0$.

VOLUME 56, NUMBER 3

The next theorem gives the promised explicit formula. Its proof follows by the lemma, so we omit that also.

Theorem 1.2 (Binet-like formula). Let $c = c(x) = a + (ax - b)\beta$ and $d = d(x) = a + (ax - b)\alpha$, where $\alpha = \alpha(x)$ and $\beta = \beta(x)$ are the solutions of the equation $t^2 - xt - 1 = 0$. Then,

$$g_n = \frac{c\alpha^n - d\beta^n}{\alpha - \beta}.$$

2. Differences of Gibonacci Products of Order 2

A gibonacci product of order m is a product of gibonacci polynomials g_{n+i} of the form $\prod_{i\geq 0} g_{n+i}^{s_j}$, where $\sum_{s_j\geq 1} s_j = m$. We now briefly study differences of gibonacci products of order 2

Using Theorem 1.2, we can establish the following differences of gibonacci products of order 2:

$$g_{n+h}g_{n+k} - g_n g_{n+h+k} = \mu (-1)^n f_h f_k;$$

$$g_{m+k}g_{n-k} - g_m g_n = (-1)^{n-k+1} \mu f_k f_{m-n+k};$$

$$g_{n+k}g_{n-k} - g_n^2 = (-1)^{n-k+1} \mu f_k^2,$$
(2.1)

where $\mu = \mu(x) = a^2 + abx - b^2$; μ equals 1 when $g_n = f_n$; and $-(x^2 + 4)$ when $g_n = l_n$. In particular, we have

$$F_{n+h}F_{n+k} - F_nF_{n+h+k} = (-1)^n F_h F_k; (2.2)$$

$$F_{n+k}F_{n-k} - F_n^2 = (-1)^{n+k+1}F_k^2; (2.3)$$

$$F_m F_{n+1} - F_{m+1} F_n = (-1)^n F_{m-n}.$$
(2.4)

A. Tagiuri discovered the beautiful formula (2.2) in 1901 [1]. About 60 years later, D. Everman *et al.* re-discovered it [2, 8]. E. C. Catalan developed identity (2.3) in 1879 [4]. G. D. Cassini found identity (2.3) in 1680 with k = 1; R. Simson discovered it independently in 1753 [4]. P. M. d'Ocagne found identity (2.4) [4].

It follows from the Catalan-like identity (2.1) that $(g_{n+k}g_{n-k} - g_n^2)^2 = \mu^2 f_k^4$; consequently,

$$4g_{n+k}g_n^2g_{n-k} + \mu^2 f_k^4 = (g_{n+k}g_{n-k} + g_n^2)^2.$$
(2.5)

Thus, $4g_{n+k}g_n^2g_{n-k} + \mu^2 f_k^4$ is a square.

It follows from identity (2.5) that

$$4G_{n+k}G_n^2G_{n-k} + \nu^2 G_k^4 = (G_{n+k}G_{n-k} + G_n^2)^2;$$

$$4B_{n+k}B_n^2B_{n-k} + \gamma^2 B_k^4 = (B_{n+k}B_{n-k} + B_n^2)^2.$$

3. Differences of Gibonacci Products of Order 3

With these tools, we now investigate differences of gibonacci products of order 3. The next theorem gives one such formula.

Theorem 3.1. Let $n \ge 0$. Then,

$$g_{n+1}g_{n+2}g_{n+6} - g_{n+3}^3 = \mu(-1)^n (x^3 g_{n+2} - g_{n+1}).$$
(3.1)

AUGUST 2018

Proof. By the gibonacci recurrence, we have

$$g_{n+6} = (x^4 + 3x^2 + 1)g_{n+2} + (x^3 + 2x)g_{n+1};$$

$$g_{n+1}g_{n+2}g_{n+6} = (x^4 + 3x^2 + 1)g_{n+2}^2g_{n+1} + (x^3 + 2x)g_{n+2}g_{n+1}^2;$$

$$g_{n+3}^3 = x^3g_{n+2}^3 + 3x^2g_{n+2}^2g_{n+1} + 3xg_{n+2}g_{n+1}^2 + g_{n+1}^3.$$

Then, by identity (2.1) and some basic algebra, we have

$$\begin{aligned} \text{LHS} &= g_{n+1}g_{n+2}g_{n+6} - g_{n+3}^3 \\ &= (x^4 + 1)g_{n+2}^2g_{n+1} + (x^3 - x)g_{n+2}g_{n+1}^2 - x^3g_{n+2}^3 - g_{n+1}^3 \\ &= x^3g_{n+2}^2(xg_{n+1} - g_{n+2}) + g_{n+2}g_{n+1}(g_{n+2} - xg_{n+1}) + x^3g_{n+2}g_{n+1}^2 - g_{n+1}^3 \\ &= -x^3g_{n+2}g_n + g_{n+2}g_{n+1}g_n + x^3g_{n+1}^2(xg_{n+1} + g_n) - g_{n+1}^3 \\ &= -x^3g_{n+2}\left[g_{n+1}^2 + \mu(-1)^{n+1}\right] + g_{n+1}\left[g_{n+1}^2 + \mu(-1)^{n+1}\right] + x^3g_{n+2}g_{n+1}^2 - g_{n+1}^3 \\ &= \mu(-1)^n(x^3g_{n+2} - g_{n+1}), \end{aligned}$$

as desired.

It follows by Theorem 3.1 that

$$g_{n+1}g_{n+2}g_{n+6} - g_{n+3}^3 = \begin{cases} (-1)^n (x^3 g_{n+2} - g_{n+1}), & \text{if } g_n = f_n, \\ (-1)^{n+1} \Delta^2 (x^3 g_{n+2} - g_{n+1}), & \text{if } g_n = l_n; \end{cases}$$

$$b_{n+1}b_{n+2}b_{n+6} - b_{n+3}^3 = \begin{cases} (-1)^n (8x^3 b_{n+2} - b_{n+1}), & \text{if } b_n = p_n, \\ (-1)^{n+1} 4(x^2 + 1)(8x^3 b_{n+2} - b_{n+1}), & \text{if } b_n = q_n. \end{cases}$$
(3.2)

Consequently,

$$G_{n+1}G_{n+2}G_{n+6} - G_{n+3}^3 = \begin{cases} (-1)^n G_n, & \text{if } G_n = F_n, \\ (-1)^{n+1} 5 G_n, & \text{if } G_n = L_n; \end{cases}$$

$$B_{n+1}B_{n+2}B_{n+6} - B_{n+3}^3 = \begin{cases} (-1)^n (8B_{n+2} - B_{n+1}), & \text{if } B_n = P_n, \\ (-1)^{n+1} 2(8B_{n+2} - B_{n+1}), & \text{if } B_n = Q_n. \end{cases}$$
(3.3)

Melham discovered the formula (3.3) with $G_n = F_n$ [7].

Theorem 3.1 has a byproduct that follows from identity (3.3) that $G_{n+1}G_{n+2}G_{n+6} - G_{n+3}^3 = (-1)^n \mu(1)G_n$, so $(G_{n+1}G_{n+2}G_{n+6} - G_{n+3}^3)^2 = \nu^2 G_n^2$. This implies

$$4G_{n+1}G_{n+2}G_{n+3}^3G_{n+6} + \nu^2 G_n^2 = (G_{n+1}G_{n+2}G_{n+6} + G_{n+3}^3)^2.$$

Similarly, we have

$$4B_{n+1}B_{n+2}B_{n+3}^{3}B_{n+6} + 4(8B_{n+2} - B_{n+1})^{2} = (B_{n+1}B_{n+2}B_{n+6} + B_{n+3}^{3})^{2};$$

$$4C_{n+1}C_{n+2}C_{n+3}^{3}C_{n+6} + \kappa^{4}4^{n+1}(C_{n+2} - 4C_{n+1})^{2} = (C_{n+1}C_{n+2}C_{n+6} + C_{n+3}^{3})^{2}.$$

Next, we pursue the implications of Theorem 3.1 to the Jacobsthal family.

3.1. Jacobsthal Implications. By virtue of the relationships $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$ and $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$, Theorem 3.1 has Jacobsthal consequences. To see them, first replace x with $u = 1/\sqrt{x}$ in identity (3.1). We then get

$$g_{n+1}g_{n+2}g_{n+6} - g_{n+3}^3 = (-1)^n \mu \left(\frac{1}{x\sqrt{x}}g_{n+2} - g_{n+1}\right), \qquad (3.4)$$

where $g_n = g_n(u)$ and $\mu = \mu(u)$.

VOLUME 56, NUMBER 3

Suppose $g_n = f_n$. Then, (3.4) yields

$$f_{n+1}f_{n+2}f_{n+6} - f_{n+3}^3 = (-1)^n \mu \left(f_{n+2} - f_{n+1} \right),$$

where $f_n = f_n(u)$. Multiplying this equation with $x^{(3n+6)/2}$ results in the Jacobsthal identity

$$J_{n+1}(x)J_{n+2}(x)J_{n+6}(x) - J_{n+3}^3(x) = (-1)^n x^{n+1} \left[J_{n+2}(x) - x^2 J_{n+1}(x) \right].$$

Similarly, when $g_n = l_n$, we get

$$j_{n+1}(x)j_{n+2}(x)j_{n+6}(x) - j_{n+3}^3(x) = (-1)^{n+1}(4x+1)x^{n+1} \left[j_{n+2}(x) - x^2 j_{n+1}(x) \right].$$

Combining the two cases, we have

$$c_{n+1}c_{n+2}c_{n+6} - c_{n+3}^3 = \begin{cases} -(-x)^{n+1} \left(c_{n+2} - x^2 c_{n+1} \right), & \text{if } c_n = J_n(x), \\ (4x+1)(-x)^{n+1} \left(c_{n+2} - x^2 c_{n+1} \right), & \text{if } c_n = j_n(x). \end{cases}$$

Consequently,

$$C_{n+1}C_{n+2}C_{n+6} - C_{n+3}^3 = \begin{cases} -(-2)^{n+1} \left(C_{n+2} - 4C_{n+1} \right), & \text{if } C_n = J_n, \\ 9(-2)^{n+1} \left(C_{n+2} - 4C_{n+1} \right), & \text{if } C_n = j_n. \end{cases}$$

The next theorem gives a companion formula for a difference of gibonacci products of order 3.

Theorem 3.2. Let $n \ge 0$. Then,

$$g_n g_{n+4} g_{n+5} - g_{n+3}^3 = \mu (-1)^{n+1} (x^3 g_{n+4} + g_{n+5}).$$

Proof. By the gibonacci recurrence, we have $g_n = (x^2 + 1)g_{n+4} - (x^3 + 2x)g_{n+3}$. Then,

$$g_n g_{n+4} g_{n+5} = (x^2 + 1)g_{n+4}^2 g_{n+5} - (x^3 + 2x)g_{n+3}g_{n+4}g_{n+5}.$$

We also have

$$g_{n+3}^3 = (g_{n+5} - xg_{n+4})^3$$

= $g_{n+5}^3 - 3xg_{n+4}g_{n+5}^2 + 3x^2g_{n+4}^2g_{n+5} - x^3g_{n+4}^3$
= $(g_{n+5} - xg_{n+4})(g_{n+5} - 2xg_{n+4})g_{n+5} + x^2g_{n+4}^2g_{n+5} - x^3g_{n+4}^3$
= $g_{n+3}(g_{n+5} - 2xg_{n+4})g_{n+5} + x^2g_{n+4}^2g_{n+5} - x^3g_{n+4}^3$.

Consequently,

$$g_n g_{n+4} g_{n+5} - g_{n+3}^3 = g_{n+4}^2 g_{n+5} - x^3 g_{n+3} g_{n+4} g_{n+5} - g_{n+3} g_{n+5}^2 + x^3 g_{n+4}^3$$
$$= (g_{n+4}^2 - g_{n+3} g_{n+5})(x^3 g_{n+4} + g_{n+5})$$
$$= (-1)^{n+1} \mu(x^3 g_{n+4} + g_{n+5}),$$

as claimed.

It follows by Theorem 3.2 that

$$g_n g_{n+4} g_{n+5} - g_{n+3}^3 = \begin{cases} (-1)^{n+1} (x^3 g_{n+4} + g_{n+5}), & \text{if } g_n = f_n, \\ (-1)^{n+1} \mu (x^3 g_{n+4} + g_{n+5}), & \text{if } g_n = l_n; \end{cases}$$
$$b_n b_{n+4} b_{n+5} - b_{n+3}^3 = \begin{cases} (-1)^{n+1} (8x^3 b_{n+4} + b_{n+5}), & \text{if } b_n = p_n, \\ (-1)^n 4 (x^2 + 1) (8x^3 b_{n+4} + b_{n+5}), & \text{if } b_n = q_n; \end{cases}$$

AUGUST 2018

Consequently, we have

$$G_n G_{n+4} G_{n+5} - G_{n+3}^3 = \begin{cases} (-1)^{n+1} G_{n+6}, & \text{if } G_n = F_n, \\ (-1)^n 5 G_{n+6}, & \text{if } G_n = L_n; \end{cases}$$

$$B_n B_{n+4} B_{n+5} - B_{n+3}^3 = \begin{cases} (-1)^{n+1} (8B_{n+4} + B_{n+5}), & \text{if } B_n = P_n, \\ (-1)^n 2 (8B_{n+4} + B_{n+5}), & \text{if } B_n = Q_n. \end{cases}$$

$$(3.5)$$

S. Fairgrieve and H. W. Gould discovered the delightful identity (3.5) when $G_n = F_n$ [3]. Next, we study the consequences of Theorem 3.2 to the Jacobsthal subfamily.

3.2. Jacobsthal Consequences. Replacing x with $u = 1/\sqrt{x}$ in (3.2), we get

$$g_n g_{n+4} g_{n+5} - g_{n+3}^3 = \mu (-1)^{n+1} \left(\frac{1}{x\sqrt{x}} g_{n+4} + g_{n+5} \right).$$

Suppose $g_n = f_n$. Multiplying the resulting equation with $x^{(3n+6)/2}$ gives

$$J_n(x)J_{n+4}(x)J_{n+5}(x) - J_{n+3}^3(x) = -(-x)^n [J_{n+4}(x) + xJ_{n+5}(x)].$$

Similarly, when $g_n = l_n$, we get

$$j_n(x)j_{n+4}(x)j_{n+5}(x) - j_{n+3}^3(x) = (-x)^n(4x+1)[j_{n+4}(x) + xj_{n+5}(x)].$$

Thus, we have

$$c_n c_{n+4} c_{n+5} - c_{n+3}^3 = \begin{cases} -(-x)^n (c_{n+4} + x c_{n+5}), & \text{if } c_n = J_n(x), \\ (4x+1)(-x)^n (c_{n+4} + x c_{n+5}), & \text{if } c_n = j_n(x); \end{cases}$$
$$C_n C_{n+4} C_{n+5} - C_{n+3}^3 = \begin{cases} -(-2)^n (C_{n+4} + 2C_{n+5}), & \text{if } C_n = J_n, \\ 9(-2)^n (C_{n+4} + 2C_{n+5}), & \text{if } C_n = j_n. \end{cases}$$

3.3. Additional Consequences. Theorem 3.2 has additional consequences. It follows from identity (3.2) that

 $G_n G_{n+4} G_{n+5} - G_{n+3}^3 = (-1)^{n+1} \mu(1) G_{n+6}; \text{ so } (G_n G_{n+4} G_{n+5} - G_{n+3}^3)^2 = \nu^2 G_{n+6}^2.$ Consequently,

$$4G_n G_{n+3}^3 G_{n+4} G_{n+5} + \nu^2 G_{n+6}^2 = (G_n G_{n+4} G_{n+5} + G_{n+3}^3)^2.$$

Likewise,

$$4B_n B_{n+3}^3 B_{n+4} B_{n+5} + \gamma^2 (8B_{n+4} + B_{n+5})^2 = (B_n B_{n+4} B_{n+5} + B_{n+3}^3)^2;$$

$$4C_n C_{n+3}^3 C_{n+4} C_{n+5} + 4^n \nu^4 (C_{n+4} + 2C_{n+5})^2 = (C_n C_{n+4} C_{n+5} + C_{n+3}^3)^2.$$

The next theorem presents another difference of gibonacci products of order 3.

Theorem 3.3. Let $n \ge 0$. Then,

$$g_n g_{n+3}^2 - g_{n+2}^3 = \mu(-1)^{n+1} (x^2 g_{n+2} - g_n).$$
(3.6)

Proof. By the gibonacci recurrence, we have

$$g_n g_{n+3}^2 = g_n (xg_{n+2} + g_{n+1})^2$$

= $x^2 g_n g_{n+2}^2 + 2xg_n g_{n+1} g_{n+2} + g_n g_{n+1}^2$.

But,

$$2xg_ng_{n+1}g_{n+2} = (g_{n+2} - xg_{n+1})(g_{n+2} - g_n)g_{n+2} + g_n(g_{n+2} - g_n)g_{n+2}$$

= $g_{n+2}^3 - xg_{n+1}g_{n+2}(g_{n+2} - g_n) - g_n^2g_{n+2}$
= $g_{n+2}^3 - x^2g_{n+1}^2g_{n+2} - g_n^2g_{n+2}.$

Therefore,

$$g_n g_{n+3}^2 - g_{n+2}^3 = x^2 g_n g_{n+2}^2 - x^2 g_{n+1}^2 g_{n+2} - g_n^2 g_{n+2} + g_n g_{n+1}^2$$

= $(g_n g_{n+2} - g_{n+1}^2)(x^2 g_{n+2} - g_n)$
= $(-1)^{n+1} \mu(x^2 g_{n+2} - g_n),$

as desired.

As can be predicted, this theorem also has Pell and Jacobsthal ramifications:

$$g_n g_{n+3}^2 - g_{n+2}^3 = \begin{cases} (-1)^{n+1} (x^2 g_{n+2} - g_n), & \text{if } g_n = f_n, \\ (-1)^n \, \Delta^2 (x^2 g_{n+2} - g_n), & \text{if } g_n = l_n; \end{cases}$$
(3.7)

$$b_{n}b_{n+3}^{2} - b_{n+2}^{3} = \begin{cases} (-1)^{n+1}(4x^{2}b_{n+2} - b_{n}), & \text{if } b_{n} = p_{n}, \\ (-1)^{n} 4(x^{2} + 1)(4x^{2}b_{n+2} - b_{n}), & \text{if } b_{n} = q_{n}; \end{cases}$$
$$c_{n}c_{n+3}^{2} - c_{n+2}^{3} = \begin{cases} -(-x)^{n}(c_{n+2} - x^{2}c_{n}), & \text{if } c_{n} = J_{n}(x), \\ (-x)^{n}(4x + 1)(c_{n+2} - x^{2}c_{n}), & \text{if } c_{n} = j_{n}(x); \end{cases}$$

the Jacobsthal identities can be established as before.

Their numeric counterparts are:

$$G_n G_{n+3}^2 - G_{n+2}^3 = \begin{cases} (-1)^{n+1} G_{n+1}, & \text{if } G_n = F_n, \\ (-1)^n 5 G_{n+1}, & \text{if } G_n = L_n; \end{cases}$$

$$B_n B_{n+3}^2 - B_{n+2}^3 = \begin{cases} (-1)^{n+1} (4B_{n+2} - B_n), & \text{if } B_n = P_n, \\ (-1)^n 2 (4B_{n+2} - B_n), & \text{if } B_n = Q_n; \end{cases}$$

$$C_n C_{n+3}^2 - C_{n+2}^3 = \begin{cases} -2^n, & \text{if } C_n = J_n, \\ -27 \cdot 2^n, & \text{if } C_n = j_n, \end{cases}$$

$$(3.8)$$

where we have used $J_{n+2} - 4J_n = (-1)^n$ and $j_{n+2} - 4j_n = 3(-1)^{n+1}$. Fairgrieve and Gould also found the identity (3.8) when $G_n = F_n$ [3]. It also follows from identity (3.8) that $G_n G_{n+3}^2 - G_{n+2}^3 = (-1)^{n+1} \mu(1) G_{n+1}$. This implies

$$4G_n G_{n+2}^3 G_{n+3}^2 + \nu^2 G_{n+1}^2 = (G_n G_{n+3}^2 + G_{n+2}^3)^2.$$

Similarly,

$$4B_n B_{n+2}^3 B_{n+3}^2 + \gamma^2 (4B_{n+2} - B_n)^2 = (B_n B_{n+3}^2 + B_{n+2}^3)^2 + 4C_n C_{n+2}^3 C_{n+3}^2 + \kappa^6 4^n = (C_n C_{n+3}^2 + C_{n+2}^3)^2.$$

Fairgrieve and Gould also discovered that $F_n^2 F_{n+3} - F_{n+1}^3 = (-1)^{n+1} F_{n+2}$ [3]. The next theorem extends this identity to the gibonacci family. Its proof is also short and neat.

Theorem 3.4. Let $n \ge 0$. Then,

$$g_n^2 g_{n+3} - g_{n+1}^3 = \mu(-1)^{n+1} (g_{n+3} - x^2 g_{n+1}).$$
(3.9)

AUGUST 2018

217

Proof. By the gibonacci recurrence, we have

$$g_n^2 g_{n+3} - g_{n+1}^3 = (g_{n+2} - xg_{n+1})^2 g_{n+3} - g_{n+1}(g_{n+3} - xg_{n+2})^2$$

$$= g_{n+2}^2 g_{n+3} + x^2 g_{n+1}^2 g_{n+3} - g_{n+1} g_{n+3}^2 - x^2 g_{n+1} g_{n+2}^2$$

$$= (g_{n+1}g_{n+3} - g_{n+2}^2)(x^2 g_{n+1} - g_{n+3})$$

$$= (-1)^{n+1} \mu(g_{n+3} - x^2 g_{n+1}).$$

It follows from identity (3.9) that

$$g_n^2 g_{n+3} - g_{n+1}^3 = \begin{cases} (-1)^{n+1} (g_{n+3} - x^2 g_{n+1}), & \text{if } g_n = f_n, \\ (-1)^n \Delta^2 (g_{n+3} - x^2 g_{n+1}), & \text{if } g_n = l_n; \end{cases}$$

$$b_n^2 b_{n+3} - b_{n+1}^3 = \begin{cases} (-1)^{n+1} (b_{n+3} - 4x^2 b_{n+1}), & \text{if } b_n = p_n, \\ (-1)^n 4(x^2 + 1)(b_{n+3} - 4x^2 b_{n+1}), & \text{if } b_n = q_n; \end{cases}$$

$$c_n^2 c_{n+3} - c_{n+1}^3 = \begin{cases} (-x)^{n-1} (c_{n+3} - c_{n+1}), & \text{if } c_n = J_n(x), \\ -(4x+1)(-x)^{n-1} (c_{n+3} - c_{n+1}), & \text{if } c_n = j_n(x). \end{cases}$$

In particular, we have

$$G_n^2 G_{n+3} - G_{n+1}^3 = \begin{cases} (-1)^{n+1} G_{n+2}, & \text{if } G_n = F_n, \\ (-1)^n 5 G_{n+2}, & \text{if } G_n = L_n; \end{cases}$$
$$B_n^2 B_{n+3} - B_{n+1}^3 = \begin{cases} (-1)^{n+1} (B_{n+3} - 4B_{n+1}), & \text{if } B_n = P_n, \\ (-1)^n 2 (B_{n+3} - 4B_{n+1}), & \text{if } B_n = Q_n; \end{cases}$$
$$C_n^2 C_{n+3} - C_{n+1}^3 = \begin{cases} -(-4)^n, & \text{if } C_n = J_n, \\ 27(-4)^n, & \text{if } C_n = j_n, \end{cases}$$

where we have used the Jacobsthal properties that $J_{n+3} - J_{n+1} = 2^{n+1}$ and $j_{n+3} - j_{n+1} = 3 \cdot 2^{n+1}$.

3.4. Additional Consequences. It follows from the above numeric identities that

$$4G_n^2 G_{n+1}^3 G_{n+3} + \nu^2 G_{n+2}^2 = (G_n^2 G_{n+3} + G_{n+1}^3)^2;$$

$$4B_n^2 B_{n+1}^3 B_{n+3} + \gamma^2 (B_{n+3} - 4B_{n+1})^2 = (B_n^2 B_{n+3} + B_{n+1}^3)^2;$$

$$4C_n^2 C_{n+1}^3 C_{n+3} + \kappa^6 \, 16^n = (C_n^2 C_{n+3} + C_{n+1}^3)^2.$$

Next, we investigate differences of gibonacci products of order 4.

4. Differences of Gibonacci Products of Order 4

The next theorem highlights an interesting difference of two gibonacci products of order 4. It is a straightforward application of the Catalan-like identity (2.2).

Theorem 4.1. Let $n \ge 0$. Then,

$$g_{n+2}g_{n+1}g_{n-1}g_{n-2} - g_n^4 = \mu[(1-x^2)(-1)^n g_n^2 - \mu x^2].$$
(4.1)

Proof. We have

LHS =
$$(g_{n+2}g_{n-2})(g_{n+1}g_{n-1}) - g_n^4$$

= $[g_n^2 - \mu(-1)^n x^2][g_n^2 + \mu(-1)^n] - g_n^4$
= $[\mu(-1)^n - \mu(-1)^n x^2]g_n^2 - \mu^2 x^2$
= $\mu(1 - x^2)(-1)^n g_n^2 - \mu^2 x^2$.

VOLUME 56, NUMBER 3

It follows Theorem 4.1 that

$$g_{n+2}g_{n+1}g_{n-1}g_{n-2} - g_n^4 = \begin{cases} (-1)^n (1-x^2)g_n^2 - x^2, & \text{if } g_n = f_n, \\ \Delta^2 \left[(-1)^n (x^2 - 1)g_n^2 - \Delta^2 x^2 \right], & \text{if } g_n = l_n; \end{cases}$$
(4.2)

$$b_{n+2}b_{n+1}b_{n-1}b_{n-2} - b_n^4 = \begin{cases} (-1)^n (1 - 4x^2)b_n^2 - 4x^2, & \text{if } b_n = p_n, \\ 4(x^2 + 1)[(-1)^n (4x^2 - 1)b_n^2 - 16x^2(x^2 + 1)], & \text{if } b_n = q_n. \end{cases}$$
(4.3)

Next, we pursue the Jacobsthal implications of Theorem 4.1.

4.1. Jacobsthal Implications. Letting $u = 1/\sqrt{x}$, equation (4.1) becomes

$$g_{n+2}g_{n+1}g_{n-1}g_{n-2} - g_n^4 = \frac{\mu}{x} \left[(x-1)(-1)^n g_n^2 - \mu \right],$$

where $g_n = g_n(u)$ and $\mu = \mu(u)$.

Suppose $g_n = f_n$, where $f_n = f_n(u)$. Multiplying the resulting equation with x^{2n-2} , we get $J_{n+2}(x)J_{n+1}(x)J_{n-1}(x)J_{n-2}(x) - J_n^4(x) = x^{n-2} \left[(-1)^n (x-1)J_n^2(x) - x^{n-1} \right].$

On the other hand, suppose
$$g_n = l_n$$
. This time, multiply the corresponding equation with x^{2n} ; this yields

$$j_{n+2}(x)j_{n+1}(x)j_{n-1}(x)j_{n-2}(x) - j_n^4(x) = x^{n-2}(4x+1)\left[(-1)^n(1-x)j_n^2(x) - (4x+1)x^{n-1}\right].$$

Combining the two cases, we have

$$c_{n+2}c_{n+1}c_{n-1}c_{n-2} - c_n^4 = \begin{cases} x^{n-2} \left[(-1)^n (x-1)c_n^2 - x^{n-1} \right], & \text{if } c_n = J_n(x), \\ x^{n-2}(4x+1) \left[(-1)^n (1-x)c_n^2 - (4x+1)x^{n-1} \right], & \text{if } c_n = j_n(x). \end{cases}$$

$$(4.4)$$

4.2. Additional Byproducts. It follows from the polynomial identities (4.2), (4.3), and (4.4) that

$$G_{n+2}G_{n+1}G_{n-1}G_{n-2} - G_n^4 = -\nu^2;$$

$$B_{n+2}B_{n+1}B_{n-1}B_{n-2} - B_n^4 = \begin{cases} 3(-1)^{n+1}B_n^2 - 4, & \text{if } B_n = P_n, \\ 2[3(-1)^n B_n^2 - 8], & \text{if } B_n = Q_n; \end{cases}$$

$$C_{n+2}C_{n+1}C_{n-1}C_{n-2} - C_n^4 = \begin{cases} 2^{n-2} \left[(-1)^n C_n^2 - 2^{n-1} \right], & \text{if } C_n = J_n, \\ 9 \cdot 2^{n-2} \left[(-1)^{n+1} C_n^2 - 9 \cdot 2^{n-1} \right], & \text{if } C_n = j_n, \end{cases}$$

$$(4.5)$$

respectively.

Identity (4.5) with $G_n = F_n$ is the *Gelin-Cesàro identity*, stated by E. Gelin, but proved by E. Cesàro (1859–1906) [1, 3].

It follows from identity (4.5) that $(G_{n+2}G_{n+1}G_{n-1}G_{n-2} - G_n^4)^2 = \nu^4$. Consequently,

$$4G_{n+2}G_{n+1}G_n^4G_{n-1}G_{n-2} + \nu^4 = (G_{n+2}G_{n+1}G_{n-1}G_{n-2} + G_n^4)^2.$$

Similarly, we have

$$(B_{n+2}B_{n+1}B_{n-1}B_{n-2} + B_n^4)^2 = \begin{cases} 4B_{n+2}B_{n+1}B_n^4B_{n-1}B_{n-2} + [4+3(-1)^n B_n^2]^2, & \text{if } B_n = P_n, \\ 4B_{n+2}B_{n+1}B_n^4B_{n-1}B_{n-2} + 4[8-3(-1)^n B_n^2]^2, & \text{if } B_n = Q_n; \end{cases}$$

$$(C_{n+2}C_{n+1}C_{n-1}C_{n-2} + C_n^4)^2 = \begin{cases} 4C_{n+2}C_{n+1}C_n^4C_{n-1}C_{n-2} + A, & \text{if } C_n = J_n, \\ 4C_{n+2}C_{n+1}C_n^4C_{n-1}C_{n-2} + B, & \text{if } C_n = j_n, \end{cases}$$
where $A = 4^{n-2}[(-1)^n C_n^2 - 2^{n-1}]^2$ and $B = 81 \cdot 4^{n-2}[(-1)^n C_n^2 + 9 \cdot 2^{n-1}]^2.$
AUGUST 2018

5. VIETA AND CHEBYSHEV IMPLICATIONS

Finally, it follows by the relationships in Table 1 that Theorems 3.1 through 4.1 have implications to the Vieta and Chebyshev subfamilies also. In the interest of brevity, we leave the work for interested gibonacci enthusiasts.

6. Acknowledgment

The author thanks the Editor for his constructive suggestions for improving the quality of exposition of the original version, and the reviewer for the encouraging words.

References

- [1] L. E. Dickson, *History of the Theory of Numbers*, Vol I, Chelsea, New York, 1966.
- [2] D. Everman et al., Problem E1396, The American Mathematical Monthly, 67 (1960), 81-82.
- [3] S. Fairgrieve and H. W. Gould, Product difference Fibonacci identities of Simson, Gelin-Cesàro, Tagiuri, and generalizations, The Fibonacci Quarterly, 43.2 (2005), 137–141.
- [4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Second edition, Wiley, New York, 2018.
- [5] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities: Revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151.
- [6] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight revisited: Part 1, The Fibonacci Quarterly, 55.4 (2017), 320–326.
- [7] R. S. Melham, A Fibonacci identity in the spirit of Simson and Gelin-Cesàro, The Fibonacci Quarterly, 41.2 (2003), 142–143.
- [8] J. Morgado, Some remarks on an identity of Catalan concerning the Fibonacci numbers, Portugaliae Mathematica, 39 (1980), 341–348.

MSC2010: 11B37, 11B39, 33B50

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701, USA *E-mail address*: tkoshy@emeriti.framingham.edu