DIFFERENCES OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDERS
 2,3, AND 4

THOMAS KOSHY

Abstract

We present the extended gibonacci polynomial family; and then investigate the differences of some special gibonacci products of orders 2, 3, and 4, and their polynomial and numeric implications to the Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, VietaLucas, and Chebyshev subfamilies.

1. Introduction

Extended gibonacci polynomials $z_{n}(x)$ are defined by the recurrence $z_{n+2}(x)=a(x) z_{n+1}(x)+$ $b(x) z_{n}(x)$, where x is an arbitrary complex variable; $a(x), b(x), z_{0}(x)$, and $z_{1}(x)$ are arbitrary complex polynomials; and $n \geq 0[5,6]$.

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials, denoted by $f_{n}(x), l_{n}(x), p_{n}(x), q_{n}(x), J_{n}(x)$, and $j_{n}(x)$, belong to the gibonacci family $\left\{z_{n}(x)\right\}$; their numeric counterparts are denoted by $F_{n}, L_{n}, P_{n}, Q_{n}, J_{n}$, and j_{n}, respectively. Vieta and VietaLucas polynomials V_{n} and v_{n}, and Chebyshev polynomials $T_{n}(x)$ and $U_{n}(x)$ also belong to the same family $[5,6]$.
1.1. Relationships Among the Subfamilies. By virtue of the relationships in Table 1, every ginonacci result has a Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev counterpart, where $i=\sqrt{-1}[5,6]$.

$$
\begin{aligned}
J_{n}(x) & =x^{(n-1) / 2} f_{n}(1 / \sqrt{x}) & j_{n}(x) & =x^{n / 2} l_{n}(1 / \sqrt{x}) \\
V_{n}(x) & =i^{n-1} f_{n}(-i x) & v_{n}(x) & =i^{n} l_{n}(-i x) \\
V_{n}(x) & =U_{n-1}(x / 2) & v_{n}(x) & =2 T_{n}(x / 2) .
\end{aligned}
$$

Table 1: Links Among the Gibonacci Subfamilies
In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so g_{n} will mean $g_{n}(x)$. Again, for brevity, we let $g_{n}=f_{n}$ or $l_{n} ; b_{n}=p_{n}$ or $q_{n} ; c_{n}=J_{n}(x)$ or $j_{n}(x) ; d_{n}=V_{n}$ or v_{n}; and $e_{n}=T_{n}$ or U_{n}; and correspondingly, we let $G_{n}=F_{n}$ or $L_{n} ; B_{n}=P_{n}$ or Q_{n}; and $C_{n}=J_{n}$ or j_{n}. We also omit a lot of basic algebra.

Again for brevity and convenience, we let

$$
\gamma=\left\{\begin{array}{ll}
1, & \text { if } G_{n}=F_{n}, \\
2, & \text { if } G_{n}=L_{n} ;
\end{array} \quad \kappa=\left\{\begin{array}{ll}
1, & \text { if } B_{n}=P_{n}, \\
3, & \text { if } B_{n}=Q_{n} ;
\end{array} \quad \nu=\left\{\begin{array}{ll}
1, & \text { if } C_{n}=J_{n}, \\
5, & \text { if } C_{n}=j_{n} ;
\end{array} \text { and } \Delta=\sqrt{x^{2}+4} .\right.\right.\right.
$$

We can develop an explicit Binet-like formula for g_{n}. To this end, we need the following result; its proof is straightforward, so we omit it.

Lemma 1.1. Let g_{n} denote the nth gibonacci polynomial. Then $g_{n}=a f_{n-2}+b f_{n-1}$, where $n \geq 0$.

DIFFERENCES OF GIBONACCI POLYNOMIAL PRODUCTS

The next theorem gives the promised explicit formula. Its proof follows by the lemma, so we omit that also.

Theorem 1.2 (Binet-like formula). Let $c=c(x)=a+(a x-b) \beta$ and $d=d(x)=a+(a x-b) \alpha$, where $\alpha=\alpha(x)$ and $\beta=\beta(x)$ are the solutions of the equation $t^{2}-x t-1=0$. Then,

$$
g_{n}=\frac{c \alpha^{n}-d \beta^{n}}{\alpha-\beta} .
$$

2. Differences of Gibonacci Products of Order 2

A gibonacci product of order m is a product of gibonacci polynomials g_{n+i} of the form $\prod_{i \geq 0} g_{n+i}^{s_{j}}$, where $\sum_{s_{j} \geq 1} s_{j}=m$. We now briefly study differences of gibonacci products of order 2.

Using Theorem 1.2, we can establish the following differences of gibonacci products of order 2 :

$$
\begin{align*}
g_{n+h} g_{n+k}-g_{n} g_{n+h+k} & =\mu(-1)^{n} f_{h} f_{k} ; \\
g_{m+k} g_{n-k}-g_{m} g_{n} & =(-1)^{n-k+1} \mu f_{k} f_{m-n+k} ; \\
g_{n+k} g_{n-k}-g_{n}^{2} & =(-1)^{n-k+1} \mu f_{k}^{2}, \tag{2.1}
\end{align*}
$$

where $\mu=\mu(x)=a^{2}+a b x-b^{2} ; \mu$ equals 1 when $g_{n}=f_{n}$; and $-\left(x^{2}+4\right)$ when $g_{n}=l_{n}$.
In particular, we have

$$
\begin{align*}
F_{n+h} F_{n+k}-F_{n} F_{n+h+k} & =(-1)^{n} F_{h} F_{k} ; \tag{2.2}\\
F_{n+k} F_{n-k}-F_{n}^{2} & =(-1)^{n+k+1} F_{k}^{2} ; \tag{2.3}\\
F_{m} F_{n+1}-F_{m+1} F_{n} & =(-1)^{n} F_{m-n} . \tag{2.4}
\end{align*}
$$

A. Tagiuri discovered the beautiful formula (2.2) in 1901 [1]. About 60 years later, D. Everman et al. re-discovered it [2, 8]. E. C. Catalan developed identity (2.3) in 1879 [4]. G. D. Cassini found identity (2.3) in 1680 with $k=1$; R. Simson discovered it independently in 1753 [4]. P. M. d'Ocagne found identity (2.4) [4].

It follows from the Catalan-like identity (2.1) that $\left(g_{n+k} g_{n-k}-g_{n}^{2}\right)^{2}=\mu^{2} f_{k}^{4}$; consequently,

$$
\begin{equation*}
4 g_{n+k} g_{n}^{2} g_{n-k}+\mu^{2} f_{k}^{4}=\left(g_{n+k} g_{n-k}+g_{n}^{2}\right)^{2} \tag{2.5}
\end{equation*}
$$

Thus, $4 g_{n+k} g_{n}^{2} g_{n-k}+\mu^{2} f_{k}^{4}$ is a square.
It follows from identity (2.5) that

$$
\begin{aligned}
4 G_{n+k} G_{n}^{2} G_{n-k}+\nu^{2} G_{k}^{4} & =\left(G_{n+k} G_{n-k}+G_{n}^{2}\right)^{2} \\
4 B_{n+k} B_{n}^{2} B_{n-k}+\gamma^{2} B_{k}^{4} & =\left(B_{n+k} B_{n-k}+B_{n}^{2}\right)^{2}
\end{aligned}
$$

3. Differences of Gibonacci Products of Order 3

With these tools, we now investigate differences of gibonacci products of order 3. The next theorem gives one such formula.
Theorem 3.1. Let $n \geq 0$. Then,

$$
\begin{equation*}
g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3}=\mu(-1)^{n}\left(x^{3} g_{n+2}-g_{n+1}\right) . \tag{3.1}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n+6} & =\left(x^{4}+3 x^{2}+1\right) g_{n+2}+\left(x^{3}+2 x\right) g_{n+1} ; \\
g_{n+1} g_{n+2} g_{n+6} & =\left(x^{4}+3 x^{2}+1\right) g_{n+2}^{2} g_{n+1}+\left(x^{3}+2 x\right) g_{n+2} g_{n+1}^{2} ; \\
g_{n+3}^{3} & =x^{3} g_{n+2}^{3}+3 x^{2} g_{n+2}^{2} g_{n+1}+3 x g_{n+2} g_{n+1}^{2}+g_{n+1}^{3} .
\end{aligned}
$$

Then, by identity (2.1) and some basic algebra, we have

$$
\begin{aligned}
\text { LHS } & =g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3} \\
& =\left(x^{4}+1\right) g_{n+2}^{2} g_{n+1}+\left(x^{3}-x\right) g_{n+2} g_{n+1}^{2}-x^{3} g_{n+2}^{3}-g_{n+1}^{3} \\
& =x^{3} g_{n+2}^{2}\left(x g_{n+1}-g_{n+2}\right)+g_{n+2} g_{n+1}\left(g_{n+2}-x g_{n+1}\right)+x^{3} g_{n+2} g_{n+1}^{2}-g_{n+1}^{3} \\
& =-x^{3} g_{n+2}^{2} g_{n}+g_{n+2} g_{n+1} g_{n}+x^{3} g_{n+1}^{2}\left(x g_{n+1}+g_{n}\right)-g_{n+1}^{3} \\
& =-x^{3} g_{n+2}\left[g_{n+1}^{2}+\mu(-1)^{n+1}\right]+g_{n+1}\left[g_{n+1}^{2}+\mu(-1)^{n+1}\right]+x^{3} g_{n+2} g_{n+1}^{2}-g_{n+1}^{3} \\
& =\mu(-1)^{n}\left(x^{3} g_{n+2}-g_{n+1}\right),
\end{aligned}
$$

as desired.
It follows by Theorem 3.1 that

$$
\begin{align*}
& g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3}= \begin{cases}(-1)^{n}\left(x^{3} g_{n+2}-g_{n+1}\right), & \text { if } g_{n}=f_{n}, \\
(-1)^{n+1} \Delta^{2}\left(x^{3} g_{n+2}-g_{n+1}\right), & \text { if } g_{n}=l_{n} ;\end{cases} \tag{3.2}\\
& b_{n+1} b_{n+2} b_{n+6}-b_{n+3}^{3}= \begin{cases}(-1)^{n}\left(8 x^{3} b_{n+2}-b_{n+1}\right), & \text { if } b_{n}=p_{n}, \\
(-1)^{n+1} 4\left(x^{2}+1\right)\left(8 x^{3} b_{n+2}-b_{n+1}\right), & \text { if } b_{n}=q_{n} .\end{cases}
\end{align*}
$$

Consequently,

$$
\begin{align*}
& G_{n+1} G_{n+2} G_{n+6}-G_{n+3}^{3}= \begin{cases}(-1)^{n} G_{n}, & \text { if } G_{n}=F_{n}, \\
(-1)^{n+1} 5 G_{n}, & \text { if } G_{n}=L_{n} ;\end{cases} \tag{3.3}\\
& B_{n+1} B_{n+2} B_{n+6}-B_{n+3}^{3}= \begin{cases}(-1)^{n}\left(8 B_{n+2}-B_{n+1}\right), & \text { if } B_{n}=P_{n}, \\
(-1)^{n+1} 2\left(8 B_{n+2}-B_{n+1}\right), & \text { if } B_{n}=Q_{n} .\end{cases}
\end{align*}
$$

Melham discovered the formula (3.3) with $G_{n}=F_{n}[7]$.
Theorem 3.1 has a byproduct that follows from identity (3.3) that $G_{n+1} G_{n+2} G_{n+6}-G_{n+3}^{3}=$ $(-1)^{n} \mu(1) G_{n}$, so $\left(G_{n+1} G_{n+2} G_{n+6}-G_{n+3}^{3}\right)^{2}=\nu^{2} G_{n}^{2}$. This implies

$$
4 G_{n+1} G_{n+2} G_{n+3}^{3} G_{n+6}+\nu^{2} G_{n}^{2}=\left(G_{n+1} G_{n+2} G_{n+6}+G_{n+3}^{3}\right)^{2}
$$

Similarly, we have

$$
\begin{aligned}
4 B_{n+1} B_{n+2} B_{n+3}^{3} B_{n+6}+4\left(8 B_{n+2}-B_{n+1}\right)^{2} & =\left(B_{n+1} B_{n+2} B_{n+6}+B_{n+3}^{3}\right)^{2} ; \\
4 C_{n+1} C_{n+2} C_{n+3}^{3} C_{n+6}+\kappa^{4} 4^{n+1}\left(C_{n+2}-4 C_{n+1}\right)^{2} & =\left(C_{n+1} C_{n+2} C_{n+6}+C_{n+3}^{3}\right)^{2} .
\end{aligned}
$$

Next, we pursue the implications of Theorem 3.1 to the Jacobsthal family.
3.1. Jacobsthal Implications. By virtue of the relationships $J_{n}(x)=x^{(n-1) / 2} f_{n}(1 / \sqrt{x})$ and $j_{n}(x)=x^{n / 2} l_{n}(1 / \sqrt{x})$, Theorem 3.1 has Jacobsthal consequences. To see them, first replace x with $u=1 / \sqrt{x}$ in identity (3.1). We then get

$$
\begin{equation*}
g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3}=(-1)^{n} \mu\left(\frac{1}{x \sqrt{x}} g_{n+2}-g_{n+1}\right), \tag{3.4}
\end{equation*}
$$

where $g_{n}=g_{n}(u)$ and $\mu=\mu(u)$.

DIFFERENCES OF GIBONACCI POLYNOMIAL PRODUCTS

Suppose $g_{n}=f_{n}$. Then, (3.4) yields

$$
f_{n+1} f_{n+2} f_{n+6}-f_{n+3}^{3}=(-1)^{n} \mu\left(f_{n+2}-f_{n+1}\right),
$$

where $f_{n}=f_{n}(u)$. Multiplying this equation with $x^{(3 n+6) / 2}$ results in the Jacobsthal identity

$$
J_{n+1}(x) J_{n+2}(x) J_{n+6}(x)-J_{n+3}^{3}(x)=(-1)^{n} x^{n+1}\left[J_{n+2}(x)-x^{2} J_{n+1}(x)\right] .
$$

Similarly, when $g_{n}=l_{n}$, we get

$$
j_{n+1}(x) j_{n+2}(x) j_{n+6}(x)-j_{n+3}^{3}(x)=(-1)^{n+1}(4 x+1) x^{n+1}\left[j_{n+2}(x)-x^{2} j_{n+1}(x)\right] .
$$

Combining the two cases, we have

$$
c_{n+1} c_{n+2} c_{n+6}-c_{n+3}^{3}= \begin{cases}-(-x)^{n+1}\left(c_{n+2}-x^{2} c_{n+1}\right), & \text { if } c_{n}=J_{n}(x), \\ (4 x+1)(-x)^{n+1}\left(c_{n+2}-x^{2} c_{n+1}\right), & \text { if } c_{n}=j_{n}(x)\end{cases}
$$

Consequently,

$$
C_{n+1} C_{n+2} C_{n+6}-C_{n+3}^{3}= \begin{cases}-(-2)^{n+1}\left(C_{n+2}-4 C_{n+1}\right), & \text { if } C_{n}=J_{n}, \\ 9(-2)^{n+1}\left(C_{n+2}-4 C_{n+1}\right), & \text { if } C_{n}=j_{n} .\end{cases}
$$

The next theorem gives a companion formula for a difference of gibonacci products of order 3.

Theorem 3.2. Let $n \geq 0$. Then,

$$
g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3}=\mu(-1)^{n+1}\left(x^{3} g_{n+4}+g_{n+5}\right) .
$$

Proof. By the gibonacci recurrence, we have $g_{n}=\left(x^{2}+1\right) g_{n+4}-\left(x^{3}+2 x\right) g_{n+3}$. Then,

$$
g_{n} g_{n+4} g_{n+5}=\left(x^{2}+1\right) g_{n+4}^{2} g_{n+5}-\left(x^{3}+2 x\right) g_{n+3} g_{n+4} g_{n+5} .
$$

We also have

$$
\begin{aligned}
g_{n+3}^{3} & =\left(g_{n+5}-x g_{n+4}\right)^{3} \\
& =g_{n+5}^{3}-3 x g_{n+4} g_{n+5}^{2}+3 x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} \\
& =\left(g_{n+5}-x g_{n+4}\right)\left(g_{n+5}-2 x g_{n+4}\right) g_{n+5}+x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} \\
& =g_{n+3}\left(g_{n+5}-2 x g_{n+4}\right) g_{n+5}+x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3} & =g_{n+4}^{2} g_{n+5}-x^{3} g_{n+3} g_{n+4} g_{n+5}-g_{n+3} g_{n+5}^{2}+x^{3} g_{n+4}^{3} \\
& =\left(g_{n+4}^{2}-g_{n+3} g_{n+5}\right)\left(x^{3} g_{n+4}+g_{n+5}\right) \\
& =(-1)^{n+1} \mu\left(x^{3} g_{n+4}+g_{n+5}\right),
\end{aligned}
$$

as claimed.
It follows by Theorem 3.2 that

$$
\begin{aligned}
& g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3}= \begin{cases}(-1)^{n+1}\left(x^{3} g_{n+4}+g_{n+5}\right), & \text { if } g_{n}=f_{n}, \\
(-1)^{n+1} \mu\left(x^{3} g_{n+4}+g_{n+5}\right), & \text { if } g_{n}=l_{n} ;\end{cases} \\
& b_{n} b_{n+4} b_{n+5}-b_{n+3}^{3}= \begin{cases}(-1)^{n+1}\left(8 x^{3} b_{n+4}+b_{n+5}\right), & \text { if } b_{n}=p_{n}, \\
(-1)^{n} 4\left(x^{2}+1\right)\left(8 x^{3} b_{n+4}+b_{n+5}\right), & \text { if } b_{n}=q_{n} ;\end{cases}
\end{aligned}
$$

THE FIBONACCI QUARTERLY

Consequently, we have

$$
\begin{align*}
G_{n} G_{n+4} G_{n+5}-G_{n+3}^{3} & = \begin{cases}(-1)^{n+1} G_{n+6}, & \text { if } G_{n}=F_{n}, \\
(-1)^{n} 5 G_{n+6}, & \text { if } G_{n}=L_{n}\end{cases} \tag{3.5}\\
B_{n} B_{n+4} B_{n+5}-B_{n+3}^{3} & = \begin{cases}(-1)^{n+1}\left(8 B_{n+4}+B_{n+5}\right), & \text { if } B_{n}=P_{n}, \\
(-1)^{n} 2\left(8 B_{n+4}+B_{n+5}\right), & \text { if } B_{n}=Q_{n} .\end{cases}
\end{align*}
$$

S. Fairgrieve and H. W. Gould discovered the delightful identity (3.5) when $G_{n}=F_{n}[3]$. Next, we study the consequences of Theorem 3.2 to the Jacobsthal subfamily.
3.2. Jacobsthal Consequences. Replacing x with $u=1 / \sqrt{x}$ in (3.2), we get

$$
g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3}=\mu(-1)^{n+1}\left(\frac{1}{x \sqrt{x}} g_{n+4}+g_{n+5}\right) .
$$

Suppose $g_{n}=f_{n}$. Multiplying the resulting equation with $x^{(3 n+6) / 2}$ gives

$$
J_{n}(x) J_{n+4}(x) J_{n+5}(x)-J_{n+3}^{3}(x)=-(-x)^{n}\left[J_{n+4}(x)+x J_{n+5}(x)\right] .
$$

Similarly, when $g_{n}=l_{n}$, we get

$$
j_{n}(x) j_{n+4}(x) j_{n+5}(x)-j_{n+3}^{3}(x)=(-x)^{n}(4 x+1)\left[j_{n+4}(x)+x j_{n+5}(x)\right] .
$$

Thus, we have

$$
\begin{aligned}
c_{n} c_{n+4} c_{n+5}-c_{n+3}^{3} & = \begin{cases}-(-x)^{n}\left(c_{n+4}+x c_{n+5}\right), & \text { if } c_{n}=J_{n}(x), \\
(4 x+1)(-x)^{n}\left(c_{n+4}+x c_{n+5}\right), & \text { if } c_{n}=j_{n}(x) ;\end{cases} \\
C_{n} C_{n+4} C_{n+5}-C_{n+3}^{3} & = \begin{cases}-(-2)^{n}\left(C_{n+4}+2 C_{n+5}\right), & \text { if } C_{n}=J_{n}, \\
9(-2)^{n}\left(C_{n+4}+2 C_{n+5}\right), & \text { if } C_{n}=j_{n} .\end{cases}
\end{aligned}
$$

3.3. Additional Consequences. Theorem 3.2 has additional consequences. It follows from identity (3.2) that
$G_{n} G_{n+4} G_{n+5}-G_{n+3}^{3}=(-1)^{n+1} \mu(1) G_{n+6}$; so $\left(G_{n} G_{n+4} G_{n+5}-G_{n+3}^{3}\right)^{2}=\nu^{2} G_{n+6}^{2}$.
Consequently,

$$
4 G_{n} G_{n+3}^{3} G_{n+4} G_{n+5}+\nu^{2} G_{n+6}^{2}=\left(G_{n} G_{n+4} G_{n+5}+G_{n+3}^{3}\right)^{2} .
$$

Likewise,

$$
\begin{aligned}
4 B_{n} B_{n+3}^{3} B_{n+4} B_{n+5}+\gamma^{2}\left(8 B_{n+4}+B_{n+5}\right)^{2} & =\left(B_{n} B_{n+4} B_{n+5}+B_{n+3}^{3}\right)^{2} ; \\
4 C_{n} C_{n+3}^{3} C_{n+4} C_{n+5}+4^{n} \nu^{4}\left(C_{n+4}+2 C_{n+5}\right)^{2} & =\left(C_{n} C_{n+4} C_{n+5}+C_{n+3}^{3}\right)^{2} .
\end{aligned}
$$

The next theorem presents another difference of gibonacci products of order 3.
Theorem 3.3. Let $n \geq 0$. Then,

$$
\begin{equation*}
g_{n} g_{n+3}^{2}-g_{n+2}^{3}=\mu(-1)^{n+1}\left(x^{2} g_{n+2}-g_{n}\right) \tag{3.6}
\end{equation*}
$$

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n} g_{n+3}^{2} & =g_{n}\left(x g_{n+2}+g_{n+1}\right)^{2} \\
& =x^{2} g_{n} g_{n+2}^{2}+2 x g_{n} g_{n+1} g_{n+2}+g_{n} g_{n+1}^{2} .
\end{aligned}
$$

But,

$$
\begin{aligned}
2 x g_{n} g_{n+1} g_{n+2} & =\left(g_{n+2}-x g_{n+1}\right)\left(g_{n+2}-g_{n}\right) g_{n+2}+g_{n}\left(g_{n+2}-g_{n}\right) g_{n+2} \\
& =g_{n+2}^{3}-x g_{n+1} g_{n+2}\left(g_{n+2}-g_{n}\right)-g_{n}^{2} g_{n+2} \\
& =g_{n+2}^{3}-x^{2} g_{n+1}^{2} g_{n+2}-g_{n}^{2} g_{n+2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g_{n} g_{n+3}^{2}-g_{n+2}^{3} & =x^{2} g_{n} g_{n+2}^{2}-x^{2} g_{n+1}^{2} g_{n+2}-g_{n}^{2} g_{n+2}+g_{n} g_{n+1}^{2} \\
& =\left(g_{n} g_{n+2}-g_{n+1}^{2}\right)\left(x^{2} g_{n+2}-g_{n}\right) \\
& =(-1)^{n+1} \mu\left(x^{2} g_{n+2}-g_{n}\right),
\end{aligned}
$$

as desired.
As can be predicted, this theorem also has Pell and Jacobsthal ramifications:

$$
\begin{gather*}
g_{n} g_{n+3}^{2}-g_{n+2}^{3}= \begin{cases}(-1)^{n+1}\left(x^{2} g_{n+2}-g_{n}\right), & \text { if } g_{n}=f_{n}, \\
(-1)^{n} \Delta^{2}\left(x^{2} g_{n+2}-g_{n}\right), & \text { if } g_{n}=l_{n} ;\end{cases} \tag{3.7}\\
b_{n} b_{n+3}^{2}-b_{n+2}^{3}= \begin{cases}(-1)^{n+1}\left(4 x^{2} b_{n+2}-b_{n}\right), & \text { if } b_{n}=p_{n}, \\
(-1)^{n} 4\left(x^{2}+1\right)\left(4 x^{2} b_{n+2}-b_{n}\right), & \text { if } b_{n}=q_{n} ;\end{cases} \\
c_{n} c_{n+3}^{2}-c_{n+2}^{3}= \begin{cases}-(-x)^{n}\left(c_{n+2}-x^{2} c_{n}\right), & \text { if } c_{n}=J_{n}(x), \\
(-x)^{n}(4 x+1)\left(c_{n+2}-x^{2} c_{n}\right), & \text { if } c_{n}=j_{n}(x) ;\end{cases}
\end{gather*}
$$

the Jacobsthal identities can be established as before.
Their numeric counterparts are:

$$
\begin{align*}
G_{n} G_{n+3}^{2}-G_{n+2}^{3} & = \begin{cases}(-1)^{n+1} G_{n+1}, & \text { if } G_{n}=F_{n}, \\
(-1)^{n} 5 G_{n+1}, & \text { if } G_{n}=L_{n} ;\end{cases} \tag{3.8}\\
B_{n} B_{n+3}^{2}-B_{n+2}^{3} & = \begin{cases}(-1)^{n+1}\left(4 B_{n+2}-B_{n}\right), & \text { if } B_{n}=P_{n}, \\
(-1)^{n} 2\left(4 B_{n+2}-B_{n}\right), & \text { if } B_{n}=Q_{n} ;\end{cases} \\
C_{n} C_{n+3}^{2}-C_{n+2}^{3} & = \begin{cases}-2^{n}, & \text { if } C_{n}=J_{n}, \\
-27 \cdot 2^{n}, & \text { if } C_{n}=j_{n},\end{cases}
\end{align*}
$$

where we have used $J_{n+2}-4 J_{n}=(-1)^{n}$ and $j_{n+2}-4 j_{n}=3(-1)^{n+1}$.
Fairgrieve and Gould also found the identity (3.8) when $G_{n}=F_{n}$ [3].
It also follows from identity (3.8) that $G_{n} G_{n+3}^{2}-G_{n+2}^{3}=(-1)^{n+1} \mu(1) G_{n+1}$. This implies

$$
4 G_{n} G_{n+2}^{3} G_{n+3}^{2}+\nu^{2} G_{n+1}^{2}=\left(G_{n} G_{n+3}^{2}+G_{n+2}^{3}\right)^{2}
$$

Similarly,

$$
\begin{aligned}
4 B_{n} B_{n+2}^{3} B_{n+3}^{2}+\gamma^{2}\left(4 B_{n+2}-B_{n}\right)^{2} & =\left(B_{n} B_{n+3}^{2}+B_{n+2}^{3}\right)^{2} ; \\
4 C_{n} C_{n+2}^{3} C_{n+3}^{2}+\kappa^{6} 4^{n} & =\left(C_{n} C_{n+3}^{2}+C_{n+2}^{3}\right)^{2} .
\end{aligned}
$$

Fairgrieve and Gould also discovered that $F_{n}^{2} F_{n+3}-F_{n+1}^{3}=(-1)^{n+1} F_{n+2}$ [3]. The next theorem extends this identity to the gibonacci family. Its proof is also short and neat.

Theorem 3.4. Let $n \geq 0$. Then,

$$
\begin{equation*}
g_{n}^{2} g_{n+3}-g_{n+1}^{3}=\mu(-1)^{n+1}\left(g_{n+3}-x^{2} g_{n+1}\right) . \tag{3.9}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n}^{2} g_{n+3}-g_{n+1}^{3} & =\left(g_{n+2}-x g_{n+1}\right)^{2} g_{n+3}-g_{n+1}\left(g_{n+3}-x g_{n+2}\right)^{2} \\
& =g_{n+2}^{2} g_{n+3}+x^{2} g_{n+1}^{2} g_{n+3}-g_{n+1} g_{n+3}^{2}-x^{2} g_{n+1} g_{n+2}^{2} \\
& =\left(g_{n+1} g_{n+3}-g_{n+2}^{2}\right)\left(x^{2} g_{n+1}-g_{n+3}\right) \\
& =(-1)^{n+1} \mu\left(g_{n+3}-x^{2} g_{n+1}\right) .
\end{aligned}
$$

It follows from identity (3.9) that

$$
\begin{aligned}
& g_{n}^{2} g_{n+3}-g_{n+1}^{3}= \begin{cases}(-1)^{n+1}\left(g_{n+3}-x^{2} g_{n+1}\right), & \text { if } g_{n}=f_{n}, \\
(-1)^{n} \Delta^{2}\left(g_{n+3}-x^{2} g_{n+1}\right), & \text { if } g_{n}=l_{n} ;\end{cases} \\
& b_{n}^{2} b_{n+3}-b_{n+1}^{3}= \begin{cases}(-1)^{n+1}\left(b_{n+3}-4 x^{2} b_{n+1}\right), & \text { if } b_{n}=p_{n}, \\
(-1)^{n} 4\left(x^{2}+1\right)\left(b_{n+3}-4 x^{2} b_{n+1}\right), & \text { if } b_{n}=q_{n} ;\end{cases} \\
& c_{n}^{2} c_{n+3}-c_{n+1}^{3}= \begin{cases}(-x)^{n-1}\left(c_{n+3}-c_{n+1}\right), & \text { if } c_{n}=J_{n}(x), \\
-(4 x+1)(-x)^{n-1}\left(c_{n+3}-c_{n+1}\right), & \text { if } c_{n}=j_{n}(x) .\end{cases}
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
G_{n}^{2} G_{n+3}-G_{n+1}^{3} & = \begin{cases}(-1)^{n+1} G_{n+2}, & \text { if } G_{n}=F_{n}, \\
(-1)^{n} 5 G_{n+2}, & \text { if } G_{n}=L_{n} ;\end{cases} \\
B_{n}^{2} B_{n+3}-B_{n+1}^{3} & = \begin{cases}(-1)^{n+1}\left(B_{n+3}-4 B_{n+1}\right), & \text { if } B_{n}=P_{n}, \\
(-1)^{n} 2\left(B_{n+3}-4 B_{n+1}\right), & \text { if } B_{n}=Q_{n} ;\end{cases} \\
C_{n}^{2} C_{n+3}-C_{n+1}^{3} & = \begin{cases}-(-4)^{n}, & \text { if } C_{n}=J_{n}, \\
27(-4)^{n}, & \text { if } C_{n}=j_{n},\end{cases}
\end{aligned}
$$

where we have used the Jacobsthal properties that $J_{n+3}-J_{n+1}=2^{n+1}$ and $j_{n+3}-j_{n+1}=$ $3 \cdot 2^{n+1}$.
3.4. Additional Consequences. It follows from the above numeric identities that

$$
\begin{aligned}
4 G_{n}^{2} G_{n+1}^{3} G_{n+3}+\nu^{2} G_{n+2}^{2} & =\left(G_{n}^{2} G_{n+3}+G_{n+1}^{3}\right)^{2} ; \\
4 B_{n}^{2} B_{n+1}^{3} B_{n+3}+\gamma^{2}\left(B_{n+3}-4 B_{n+1}\right)^{2} & =\left(B_{n}^{2} B_{n+3}+B_{n+1}^{3}\right)^{2} ; \\
4 C_{n}^{2} C_{n+1}^{3} C_{n+3}+\kappa^{6} 16^{n} & =\left(C_{n}^{2} C_{n+3}+C_{n+1}^{3}\right)^{2} .
\end{aligned}
$$

Next, we investigate differences of gibonacci products of order 4.

4. Differences of Gibonacci Products of Order 4

The next theorem highlights an interesting difference of two gibonacci products of order 4. It is a straightforward application of the Catalan-like identity (2.2).

Theorem 4.1. Let $n \geq 0$. Then,

$$
\begin{equation*}
g_{n+2} g_{n+1} g_{n-1} g_{n-2}-g_{n}^{4}=\mu\left[\left(1-x^{2}\right)(-1)^{n} g_{n}^{2}-\mu x^{2}\right] . \tag{4.1}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\text { LHS } & =\left(g_{n+2} g_{n-2}\right)\left(g_{n+1} g_{n-1}\right)-g_{n}^{4} \\
& =\left[g_{n}^{2}-\mu(-1)^{n} x^{2}\right]\left[g_{n}^{2}+\mu(-1)^{n}\right]-g_{n}^{4} \\
& =\left[\mu(-1)^{n}-\mu(-1)^{n} x^{2}\right] g_{n}^{2}-\mu^{2} x^{2} \\
& =\mu\left(1-x^{2}\right)(-1)^{n} g_{n}^{2}-\mu^{2} x^{2} .
\end{aligned}
$$

It follows Theorem 4.1 that

$$
\begin{align*}
& g_{n+2} g_{n+1} g_{n-1} g_{n-2}-g_{n}^{4}= \begin{cases}(-1)^{n}\left(1-x^{2}\right) g_{n}^{2}-x^{2}, & \text { if } g_{n}=f_{n}, \\
\Delta^{2}\left[(-1)^{n}\left(x^{2}-1\right) g_{n}^{2}-\Delta^{2} x^{2}\right], & \text { if } g_{n}=l_{n} ;\end{cases} \tag{4.2}\\
& b_{n+2} b_{n+1} b_{n-1} b_{n-2}-b_{n}^{4}= \begin{cases}(-1)^{n}\left(1-4 x^{2}\right) b_{n}^{2}-4 x^{2}, & \text { if } b_{n}=p_{n}, \\
4\left(x^{2}+1\right)\left[(-1)^{n}\left(4 x^{2}-1\right) b_{n}^{2}-16 x^{2}\left(x^{2}+1\right)\right], & \text { if } b_{n}=q_{n} .\end{cases} \tag{4.3}
\end{align*}
$$

Next, we pursue the Jacobsthal implications of Theorem 4.1.
4.1. Jacobsthal Implications. Letting $u=1 / \sqrt{x}$, equation (4.1) becomes

$$
g_{n+2} g_{n+1} g_{n-1} g_{n-2}-g_{n}^{4}=\frac{\mu}{x}\left[(x-1)(-1)^{n} g_{n}^{2}-\mu\right]
$$

where $g_{n}=g_{n}(u)$ and $\mu=\mu(u)$.
Suppose $g_{n}=f_{n}$, where $f_{n}=f_{n}(u)$. Multiplying the resulting equation with $x^{2 n-2}$, we get

$$
J_{n+2}(x) J_{n+1}(x) J_{n-1}(x) J_{n-2}(x)-J_{n}^{4}(x)=x^{n-2}\left[(-1)^{n}(x-1) J_{n}^{2}(x)-x^{n-1}\right] .
$$

On the other hand, suppose $g_{n}=l_{n}$. This time, multiply the corresponding equation with $x^{2 n}$; this yields

$$
j_{n+2}(x) j_{n+1}(x) j_{n-1}(x) j_{n-2}(x)-j_{n}^{4}(x)=x^{n-2}(4 x+1)\left[(-1)^{n}(1-x) j_{n}^{2}(x)-(4 x+1) x^{n-1}\right] .
$$

Combining the two cases, we have

$$
c_{n+2} c_{n+1} c_{n-1} c_{n-2}-c_{n}^{4}= \begin{cases}x^{n-2}\left[(-1)^{n}(x-1) c_{n}^{2}-x^{n-1}\right], & \text { if } c_{n}=J_{n}(x), \tag{4.4}\\ x^{n-2}(4 x+1)\left[(-1)^{n}(1-x) c_{n}^{2}-(4 x+1) x^{n-1}\right], & \text { if } c_{n}=j_{n}(x)\end{cases}
$$

4.2. Additional Byproducts. It follows from the polynomial identities (4.2), (4.3), and (4.4) that

$$
\begin{align*}
& G_{n+2} G_{n+1} G_{n-1} G_{n-2}-G_{n}^{4}=-\nu^{2} ; \tag{4.5}\\
& B_{n+2} B_{n+1} B_{n-1} B_{n-2}-B_{n}^{4}= \begin{cases}3(-1)^{n+1} B_{n}^{2}-4, & \text { if } B_{n}=P_{n}, \\
2\left[3(-1)^{n} B_{n}^{2}-8\right], & \text { if } B_{n}=Q_{n} ;\end{cases} \\
& C_{n+2} C_{n+1} C_{n-1} C_{n-2}-C_{n}^{4}= \begin{cases}2^{n-2}\left[(-1)^{n} C_{n}^{2}-2^{n-1}\right], & \text { if } C_{n}=J_{n}, \\
9 \cdot 2^{n-2}\left[(-1)^{n+1} C_{n}^{2}-9 \cdot 2^{n-1}\right], & \text { if } C_{n}=j_{n},\end{cases}
\end{align*}
$$

respectively.
Identity (4.5) with $G_{n}=F_{n}$ is the Gelin-Cesàro identity, stated by E. Gelin, but proved by E. Cesàro (1859-1906) [1, 3].

It follows from identity (4.5) that $\left(G_{n+2} G_{n+1} G_{n-1} G_{n-2}-G_{n}^{4}\right)^{2}=\nu^{4}$. Consequently,

$$
4 G_{n+2} G_{n+1} G_{n}^{4} G_{n-1} G_{n-2}+\nu^{4}=\left(G_{n+2} G_{n+1} G_{n-1} G_{n-2}+G_{n}^{4}\right)^{2}
$$

Similarly, we have

$$
\begin{aligned}
& \left(B_{n+2} B_{n+1} B_{n-1} B_{n-2}+B_{n}^{4}\right)^{2}= \begin{cases}4 B_{n+2} B_{n+1} B_{n}^{4} B_{n-1} B_{n-2}+\left[4+3(-1)^{n} B_{n}^{2}\right]^{2}, & \text { if } B_{n}=P_{n}, \\
4 B_{n+2} B_{n+1} B_{n}^{4} B_{n-1} B_{n-2}+4\left[8-3(-1)^{n} B_{n}^{2}\right]^{2}, & \text { if } B_{n}=Q_{n} ;\end{cases} \\
& \left(C_{n+2} C_{n+1} C_{n-1} C_{n-2}+C_{n}^{4}\right)^{2}= \begin{cases}4 C_{n+2} C_{n+1} C_{n}^{4} C_{n-1} C_{n-2}+A, & \text { if } C_{n}=J_{n}, \\
4 C_{n+2} C_{n+1} C_{n}^{4} C_{n-1} C_{n-2}+B, & \text { if } C_{n}=j_{n},\end{cases}
\end{aligned}
$$

where $A=4^{n-2}\left[(-1)^{n} C_{n}^{2}-2^{n-1}\right]^{2}$ and $B=81 \cdot 4^{n-2}\left[(-1)^{n} C_{n}^{2}+9 \cdot 2^{n-1}\right]^{2}$.

THE FIBONACCI QUARTERLY

5. Vieta and Chebyshev Implications

Finally, it follows by the relationships in Table 1 that Theorems 3.1 through 4.1 have implications to the Vieta and Chebyshev subfamilies also. In the interest of brevity, we leave the work for interested gibonacci enthusiasts.

6. Acknowledgment

The author thanks the Editor for his constructive suggestions for improving the quality of exposition of the original version, and the reviewer for the encouraging words.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol I, Chelsea, New York, 1966.
[2] D. Everman et al., Problem E1396, The American Mathematical Monthly, 67 (1960), 81-82.
[3] S. Fairgrieve and H. W. Gould, Product difference Fibonacci identities of Simson, Gelin-Cesàro, Tagiuri, and generalizations, The Fibonacci Quarterly, 43.2 (2005), 137-141.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Second edition, Wiley, New York, 2018.
[5] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities: Revisited, The Fibonacci Quarterly, 55.2 (2017), 147-151.
[6] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight revisited: Part 1, The Fibonacci Quarterly, 55.4 (2017), 320-326.
[7] R. S. Melham, A Fibonacci identity in the spirit of Simson and Gelin-Cesàro, The Fibonacci Quarterly, 41.2 (2003), 142-143.
[8] J. Morgado, Some remarks on an identity of Catalan concerning the Fibonacci numbers, Portugaliae Mathematica, 39 (1980), 341-348.

MSC2010: 11B37, 11B39, 33B50
Department of Mathematics, Framingham State University, Framingham, MA 01701, USA
E-mail address: tkoshy@emeriti.framingham.edu

