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The polygonal sequence (or sequences of polygonal numbers) of order r (where r is 
an integer, r > 3) may be defined recursively by 

(1) (r , i) = 2(r, i - 1) - (r, i - 2) + r - 2 

with (r,0) = 0 , ( r , l ) = 1. 
It i s possible to obtain a direct formula for (r , i) from (1). A particularly simple way 

of doing this is via the Gregory interpolation formula. (For an interesting discussion of this 
formula and its derivation, see [ 3] . ) The resul t i s 

(2) (r , i) = i + (r - 2)i(i - l ) / 2 = [(r - 2)i2 - (r - 4) i ] /2 . 

It is comforting to note that the fTsquaren numbers — the polygonal numbers of order 4 — ac -
tually are the squares of the integers. 

Using either (1) or (2), we cam take a look at the f irst few, say, triangular numbers 
(r = 3) 

0, 1, 3 , 6, 10, 15, 21, 28, 36, 45, ••• . 

One observation we can make is that three of these numbers are also squares — namely 0, 1, 
and 36. We can pose the following question: Are there any more of these " t r iangular-square" 
numbers? Are there indeed infinitely many of them? What can be said about the numbers 
common to any pair of polygonal sequences? 

We shall begin by answering the las t of these questions, and then return to the other 
two. Suppose that s i s an integer common to the polygonal sequences of o rders rA and r2 

(say rA < r 2 ) . Then there exist integers p and q such that 

s = [(rj - 2)p2 - ( r i - 4)p]/2 = [ (r2 - 2)q2 - (r2 - 4)q]/2 , 

so that 

(3) ( r i - 2)p2 - (rt - 4)p = (r2 - 2)q2 - (r2 - 4)q , 
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and in fact, since both sides of the equation (3) are always even, every pair of non-negative 
integers p , q which satisfy (3) determine such an integer s. 

As a quadratic in p , this has integral solutions, so — since all coefficients are inte-
gers — the discriminant 

( r i _ 4)2 + 4(r4 - 2)(r2 - 2)q2 - 4(rj - 2)(r2 - 4)q 

must be a perfect square, say x2, so that 

x2 = 4(rA - 2)(r2 - 2)q2 - 4(rt - 2)(r2 - 4)q + (rt - 4)2 . 

As a quadratic in q, this also has integral solutions, and the discriminant — and hence 
1/16 of the discriminant — must again be a perfect squre, say y2, so that 

(4) y2 - ( r i - 2)(r2 - 2)x2 = (rt - 2)2(r2 - 4)2 - (n - 2)(r2 - 2)(rj - 4)2 , 

where p and q are given by 

(ri - 4) + x (rx - 2)(r2 - 4) + y 
( 5 ) P = 2(r4 - 2) q = 2(rt - 2)(r2 - 2) 

Although it can be shown, by solving (5) for x and y and substituting into (4), that every so-
lution of (4) gives a solution of (3), it should be noted that some of the integer solutions of (4) 
may not give integer values for p and q. Nevertheless, (4) and (5) give us all possible can-
didates for integer solutions of (3). 

Now (4) i s in the form of Pe lPs equation, y2 - dx2 = N, which has a finite number of 
integral solutions in x and y if d is a perfect square while N does not vanish. For then 
the left side can be factored into (y - ax)(y + ax), where a is an integer; and N has only 
finitely many integral divisors. 

So we already have a partial answer to our question. If (rA - 2)(r2 - 2) is a perfect 
square and the quantity on the right side of (4) i s non-zero, we have only finitely many candi-
dates for integers common to the two sequences of o rde rs r1 and r2. 

On the other hand, if (rt - 2)(r2 - 2) is a perfect square and the right side of (4) is zero , 
then (4) reduces to a l inear equation in x and y: 

y = ±N/Tr"i - 2)(r2 - 2)"x 

Since the coefficient of x is an integer, this has infinitely many integral solutions. 
An analysis of the right side of (4) reveals that, with T-± / r2, this quantity vanishes 

only when one of rA and r2 i s 3 and the other is 6. In that case , (4) becomes y2 - 4x2 = 0, 
or y = ±2x; and equations (5), with y replaced by ±2x, become p = (x - l ) /2 ; q =? (1 ± x) /4 . 
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At this point it i s not too hard to see that for infinitely many integers x, the above 
equations yield non-negative integral values for both p and q. Therefore, there a re i n -
finitely many hexagonal-triangular numbers. In this case , however, we have taken the long 
way around; for it can be shown directly, using (3), that indeed every hexagonal number is 
also a tr iangular number. 

It remains for us to investigate what happens when (r1 - 2)(r2 - 2) i s not a perfect 
square (and here the right side of (4) is necessar i ly non-zero). If this is the case , then there 
a re infinitely many positive integral solutions to (4) if there is one such solution [ 2, p. 146 ] , 
But in fact we can always exhibit at leas t one solution — namely xt = r l 9 yt = r ^ r j - 2) — 
corresponding to p = q = 1. We still have the job, however, of showing that infinitely many 
of these solutions of (4) give us integer solutions of (3). 

Consider the related equation 

(6) u2 - (ri - 2)(r2 - 2)v2 = 1 . 

With (rt - 2)(r2 - 2) not a perfect square, this has infinitely many integral solutions, gene-
rated by 

u n + v n N/(rx - 2)(r2 - 2) = (uj + v t sli^ - 2)(r2 - 2 ) ) n , 

where ul9 vA is the smallest positive solution [2 , p. 142]. We obtain ul9 v4 by inspection. 
In part icular , u2, v2, given by 

u2 + v2 N/(rx - 2)(r2 - 2) = (ux + vt *J(rt - 2)(r2 - 2) )2 , 

i s a solution of (6), and by expanding the right side and comparing coefficients, we get 

u2 = u | + (ri - 2)(r2 - 2)vJ 
(7) 

v2 = 2u1v1 

Now infinitely many (but not necessari ly all) of the positive solutions of (4) are given by 

(8) y n + 1 + x n + l N / ( r 1 - 2 ) ( r 2 - 2 ) = (u, + v. ^ ( r t - 2)(r2 - 2) )(yn + x^ {rt - 2)(r2 - 2)) 

where u., v. is any positive solution of (6) [2, p. 146], say u2, v2. Again comparing co-
efficients, we get 

V l = U2\ + ( r l " 2 ) ( r 2 " 2 ) v2Xn ' 
x in = v0y + u0x , n+1 2Jn 2 n ' 

(9) 

with the side conditions x4 = r4 , yA = r2(rA - 2). 
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Consider the f irs t of equations (9). This can, by adding a suitable quantity to each side, 
be changed to 

y n+l + ( r i " 2 ) ( r 2 " 4 ) + ( r i " 2 ) ( r 2 - 4H% - 1) = u2(yn + ( r 1 -2 ) ( r 2 -4 ) ) 

+ (rx - 2)(r2 - 2)v2xn , 

and using (6) and (7)9 we get 

y n+l + < r i " 2)(3?2 " 4 ) = U 2 ( y n + ( r i " 2 ) ( r 2 " 4 ) ) + 2( l>1 " 2 ) ( r 2 " 2 ) u l v i x
n 

- 2 ( r 1 - 2 ) 2 ( r 2 - 2 ) ( r 2 - 4 ) v 2 (10) 0 /_ 0>2/„ ow„ ,w.2 

Recalling that y1 = r2(rx - 2), clearly 

yt = - ( r j - 2)(r2 - 4) (mod 2(rj - 2)(r2 - 2)) ; 

and letting n = k in (10), we see that if 

y k = -(rA - 2)(r2 - 4) (mod 2(rt - 2)(r2 - 2)) 

for some integer k, then each term on the right of (10) is divisible by 20^ - 2)(r2 - 2). 
Hence the left side of (10) is divisible by this same quantity, and 

y k+l s ~ ( r i " 2 ) ( r 2 " 4 ) ( m o d 2 ( r i " 2 ) ( r 2 ~ 2 ) ) e 

By mathematical induction, and with reference to the second of equations (5), all of the y f s 
given by (9) produce positive integral values for q. 

Similarly, the second of equations (9) can be transformed into 

Xnn-1 + ( r i " 4 ) + (U2 " 1 ) ( r i " 4 ) + V 2 ( r i " 2 ) ( r 2 " 4 ) = V 2 ( y n + ( r i " 2 ) ( r 2 " 4 ) ) 

+ u2(xn + (r t - 4)), 

and again using (6) and (7), we get 

x n+ l + (l>1 " 4 ) = v 2 ^ n
 + ( ri " 2>(r2 " 4 » + u 2< x

n
 + r i - 4)) 

( 1 1 ) - 2v2(ri - 2)(r2 - 2)(rt - 4) - 2u1v1(r1 - 2)(r2 - 4) 

Since 

y n = -(r* - 2)(r2 - 4) (mod 2{vt - 2)(r2 - 2)) 

for all n, certainly 
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y n = -(r j - 2)(r2 - 4) (mod 2(vt - 2)) . 

We have that 

xt = - ( r i - 4) (mod 2(ri - 2)) , 

since xj = v1 ; and it can be seen from (11) that if 

x k s -fri - 4) (mod 2(rA - 2)) 

for some integer k, then 

x k+l 5 " ( r i " 4 ) ( m o d 2 ( r * " 2 ) ) * 

That i s , 2(rA - 2) divides x + (r1 - 4) for every positive integer n. 
To summarize, for (rt - 2)(r2 - 2) not a perfect square, we have exhibited (in (9)) in-

finitely many — but not necessar i ly all — of the solutions to the Pell-type equation (4); and all 
of these give positive integral solutions p ,q of (3). These, in turn, give integers s which 
are common to the two polygonal sequences of o rders rA and r2. 

In view of the above, we can now state the following theorem: 
Theorem. Given two distinct integers rt and r2 , with 3 < rj < r2 , each defining 

the order of a polygonal sequence, there are infinitely many integers common to both s e -
quences if and only if one of the following is t rue: 

i. ri = 3 and r2 = 6S or 
ii. (rA - 2)(r2 - 2) is not a perfect squre. 
In pract ice, given part icular integers rt and r2, we can get all of the solutions of (4) 

by using at most finitely many equations of the form (8), with a different x1} yt for each one. 
Some of these equations can be eliminated or modified to leave out those solutions which give 
non-integer values for either p or q. We may then obtain equations generating all pa i r s 
p ,q for which ( r^p) = (r2,q); and, if desired, finitely many equations generating the num-
bers s common to the two sequences. The procedure for finding all solutions of (4) is ardu-
ous and depends errat ical ly on the actual values of rj and r2. For the general machinery, 
see G. Chrystal [ l , pp. 478-486]. 

Now we can easily answer our questions about triangular squares. Letting rx = 3 and 
r2 = 4, (rt - 2)(r2 - 2) becomes 2, which is not a perfect square. There a r e , then, infin-
itely many triangular squares. A s a mat ter of fact, this result has been known for some time. 
To exhibit these numbers , we note that since the coefficient of q in (3) becomes 0, we can 
get a formula like (4) by applying the quadratic formula only once. The result is 

x2 - 8q2 = 1 
o r 
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(12) x2 - 2y2 = 1 , 

where p = (x - l ) / 2 and q = y /2 . Conveniently enough, (12) is already in the form of (6); 
and since xt = 3, yt = 2 is the smallest positive solution, all non-negative solutions of (12) 
a re given by 

(13) x n + ynN/2 = (3 + 2<s/2)n (n = 0, 1,. 2, •• • ) . 

Certainly the "next" solution is given by 

x ^ + y ^ ^ 2 " = (x + y N/"2)(3 + 2 N / I ) , n+1 ^n+l v n J n / v ' J 

and by comparing coefficients we get 

x f- = 3x + 4y , 
n+1 n Jxi 

v = 2x + 3v 
Jn+1 n ^n J 

with (from (13)) x0 = 1, y0 = 09 

It follows by induction from (14) that all values of y a re even non-negative integers , 
and all x f s a re odd positive integers. Therefore, for any solution p ,q of (3) — in non-
negative integers and with rt = 3, r2 = 4 — there exists an n (n = 0, 1, 2, . . . ) such that 

P = P n = (x - l ) / 2 
(15) n n 

q = q = y /2 

where x , y a re given by (14)* Fur thermore , p , q given by (15) forms a non-negative 
integral solution for any n, since the x f s are always odd and all of the y f s a re even, 

All tr iangular square numbers, then, a re given by 

(16) Sn = fc£ + p n ) / 2 = <£ . 

Solving (14) with x0 = 1, y0 = 0, we get 

x n = [(3 + 2<\/2)n + (3 - 2 \ / 2 ) n ] / 2 

y n = [(3 + 2N/2)n - (3 - 2N/2)n]/2Nj2 , 

and combining these with (15) and (16), we obtain 

(17 + 12N/2)n + (17 - 12 \ /2 ) n - 2 
Sn " ~ 32" 
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where s i s the n t r iangular-square number. 
n th 

Likewise, we can compute a formula for the n triangular-pentagonal number. The 
result is 

- (2 - N / 3 ) ( 9 7 + 5 6 N / 3 ) H + (2 + N / 3 ) ( 9 7 - 56A/3)11 - 4 
Sn — — ~ — — . 

This agrees with a resul t recently published by W. Sierpinski [ 4 ] . 
I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the 

writing of this paper possible. 
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[Continued from page 71. ] 

m 
M"1 = E ^ Dk 

k=0 
is given by 

m* 
(VII) 2 TT ^ = l/tAe01* + B e°2 t> 

k=0 

We now note that for Case 2, where A + B = 0, Eq. (VIE) does not exist for t = 0, and 
hence there is no inverse operator M" . Thus, a sufficient condition for M~ (see CD) to 
exist i s that A + B ^ 0, i. e . , Case 1. For A + B ^ 0, one readily finds that 

\ ( ^ 2 \ - A ^ ) (VIII) (A + B)m* = (c2 - CiTH, 

where H, (x|A) is the Eulerian polynomial cited in (*). 
Many more identities can be quoted. Indeed, for m, n = 0, 1, • • • , one has 

[Continued on page 11&* ] 


