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1. In this article, a generalized form of Euler's law concerning the sigma function will
be obtained and used to derive expressions for ?a which contain just functions involving

addition and multiplication. These will be substituted in the equations
a
) G0 -n -1 =0

to obtain equations with clagses of solutions identical with the class of prime numbers.
2. Let

dln
Proposition 1. If
Z F(n) x"
=1
converges on some interval about 0, then
n
(2) 0 = nR(n) + Z F@)R@ - a) ,
a=1
where
= % £(n)/n
=\
) doRmx" = 1 @~
n=0 n=

The proof mimics Euler's for the case f = identity, which is the recursive expression

for sum of divisors he obtained by describing R. [1]
199
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Proof.
3t/ - 5 = 3 i 3 &
n=1 n k
= f(I)x + £(1)x% + £(1)x3 + f(A)x* + £(1)x% + £(1)x8 + ...
+ f(2)x? + f(2)x4 + £f(2)x8 + ...
+ f(3)x3 + f(3)x8 + «-»
+ f@) xt + -
+ f(5)x% + +o-
+ f(6)x6 + oo
= an f(@d = Z F(n)xn .
n=1 d|n n=1
That is,
(4) Z f(n)x"/(1 - x") = E Fm)x" .
n=1 n=1
Suppose
f(n)/n
(5) 0<Im@a- x") < w

on some interval about 0. We show that (2) holds under (5) and then that (5) holds when

E F(n) <"
n=1

converges on some interval about 0.
Let (5) hold. We have the identity:

. o n f(n)/n B ° n
og I (1L -x) —Zf(n)/nlog(l—x ) .
1

n=1

Differentiating, and substituting from (3) as (5) permits:
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[5) f(n)/.n
© i[ﬂ @-x"
n-1 n, _ Li
3 -t - 1) = L Tm)/n
1 oI - x"
1
- % Z Rm)x™ } / Z R(m)fim
0 0
- Z mR m)x™1/ Z Rm)x™ .
0 0
Hence, by (4),
(6) - 2o mR@E™/ Y0 R = D0t/ @ - K" = Y Fws”
0 1 !

and Eq. (6) gives:

0 =)

0 = Z F(m)xn z R(m)xm + Z mR(m)xIn
0

1 0
So, for each n 2 0, the coefficient & is 0

n
0 = Z F@Rm - a) + nR() .
=1

It remains to show that (5) holds when

0

E F(n) <

=1

converges on some interval about 0. By Eq. (6),

©0

Z F)x© = -xd/dx log P(x) ,
1
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where
&) f(n)/n
Pix) = I (1 -x") .
1
Therefore,
(7 P(x) = expf - ZF(n)xn—ldx .
1

Hence P(x) = 0 iff

/Z Fi)x"lax = «
1

iff

F(n)xn - o
2 — =
1

and P(x) = o0 iff
> W/nFox" = -
1

Thus (5) holds iff

[~}

Y /0)Fmx| < «
1

on some interval about 0, and this is the case when

[

Z F(n)xn <
1

on the same interval. Q.E.D.
Now it is necessaryto show that the conditions of Proposition 1 apply to ?a. Actually,
we show a little more.

Proposition 2, Let
2 fld = F()

d i n
Then,

IZF(n}xnl < o
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on some interval about 0 if and only if

izf(n)xn\ <

on some interval about O.

Proof,

lZF(n)xnl < o —*]Zf(n)xn/l - an < e —»lzf(n)xnl <

by (4) and comparison. For the other direction, let

|3 x| < =

By the root test,
1

lim sup |£(n) ._ﬁ < e,

That is, sup Li < e, where
L
. ik
L, = l1£n lf(aik)l !

on some sequence {aik}'
Define {ck} by:
|fe, )| = max [f@]
g]lak

for a sequence {ak}. For each Kk, ) is one of the divisors of . Then,
1

‘K
lim \f(ck)\ < sup L < o,

and over all sequences {ak} the {Ck} are bounded by:

1
%
sup lim ‘f(ck)l < supLl, < =
a 1
k
That is,

1
%
sup lim | max lf(d)[l < sup L, .

{a.) djay
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Now
L L
[max |f(d)|]ak < [ma.x \f(d)\]ck
dlak cllak
So:
L
a
sup 1im“imax lf(d)i] k = sup Li < o,
2, d .
That is,
1
lim sup max .f(d)ln < sup L, < w,
d|n
Now, we demonstrate below that
2T x| < =

on some interval about 0, where T is the number-of-divisors function. The demonstration

below is valid but clearly circuitous. Thus, 1

lim sup lT(n) \H <

by the root test, and
1 1 L
lim sup [T(n} max lf(d) ]]n = lim sup |T(n)|n [max \f(d)l] n
dln d.n

1

1
Y lim sup[max lf(d)l]n < o |
din

< lim sup lT(n) l
Thus,

Ean(n) max \f(d)l < »
n dln

on some interval about 0. Then,
IS Fr@x"| £ 3 |Frm|x" = Zg‘r | £@ | <"
n

ST max |H@)]x" <
djn

g.e.d.
We repairthe gap inthe proof of Proposition 2, the assertion without demonstration that

22T (@) "
converges on some interval about 0, by comparing this sum with another. The result is

obvious on comparing T(n) with the identity function:
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[ Zons®| <
on (-1,1).
One more proposition is needed to finish the background for a demonstration that Prop-
osition 1 applies to ?oz .

Proposition 3:

3. 1/n F(n) S

converges on some interval about 0 iff

S F0)x"
converges on some interval about 0.
Proof. Under the hypothesis that
> 1/nF(n) <
converges we have by the root test:
1

lim sup \F(n)(l/n) lH < oo,

That is, 1

%
sup lim \F(ak)(l/ak)\ <
a

k
Now, clearly when
1
a
k
|F@)/a)|
converges, its limit is 1
a,
lim [Fa)|
Also, it is clear that
1
a_
k
| Feay) |
converges if and only if
1
a
k
|Fa)/a)| <,
too, converges. So
1 1 L
. n K A
lim sup |F(n)| = sup lim IF(ak)i = gup lim lF(ak)(l/akH
2 1 Y

= lim sup |F(n)(1/n) |H
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So ZF(n) <

converges on some interval about 0. The other direction is similar, or by comparison,
qg.e.d.
Now we prove that Proposition 1 may be applied to %.

Proposition 4.
2 ?a(n) x"

converges on some interval about 0.

Proof. an converges on [0,1). Apply Proposition 3 inductively: for each «,

a n
n x

converges on some interval. Then, by Proposition 2,
n
2 G (n)x

converges. ¢.e.d. Propositionl now yields a recursive relation on ?a in terms of the co-
efficients of the power series for P(x) with f(n) = n%. P(x) is an infinite product and, in
order to determine an expression for (?a which is recursive in addition and multiplication,
we express the coefficients of the power series for P(x) as the coefficients of the expansion
of a finite product.

Proposition 5.

n
0 = nR@) + 3 G @R@ - a) ,
a=1

where R(k) = coefficient of xk in

K na— 1

o @a-xh
n=1

Proof. Applying Proposition 1, to

a-1
o] n [o'e}
na- xn) = Z Smx" :
n=1 n=0
Let
k na_l
mQa - xn) = E 'ﬁk(n)xn
1 n
(Definition). Then
-1 a-1
k+1 n% [k+1]
Z Fk+1(n) X = I (1-x%) = (1 - xk+l) x 3, Rk(n)xn
n =1 n

[k+1]a'—1 a1

r=0 r
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= n k1] *7 [k + 1] a-1 r_ (k+lr
> Rk(n)x + 3 (-1)"x x ) Fk(n) <
n n

r=1 r

_ . n
= Z Rk+1(n) X .
n

None of the terms in the second summand have exponents =k. Thus

ﬁk(i) - Fk+1(i)

forall i =k. Indeed, R (i) = Ry(i) forall i and 1 suchthat i =k =1. Thus

a-1
n

1 - <" = lil:n ; -ﬁk(n) &= % 111?1 ﬁk(n)xn = % En(n) <2,

[l ==

:ZS(n)xn = lim
k

and ﬁn(n) = S(). q.e.d.

It is now possible to define a function, which turns out to be ?a , which is expressible in
terms of just addition and multiplication, and which leads to the equation mentioned in the
title.

Define Foz(l) = 1 and, supposing F  definedon 1,2, **, n-1, let Fa(n) satisfy

n

0 = nR@) + 3 Fa(a)R(n -a),
a=1

where R is defined as in the statement of Proposition 5. Then, by Proposition 5, Fa =’%,

and Fa satisfies 0 = Fa(n) -n% -1 just when n is a prime number.
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