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H-245 Proposed by P. Bruckman, University of llinois, Chicago Circle, lllinais.
Prove the identity

n—1
0 klk-1) 2 I (1+x)
r=1

X =
g (XD (%) -t x), ’

where
() = (1 =x)1=32W1 =x3)(1=x"), n=1,2-;(x)g=1.

H-246 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Put

m n

Flm,n) = Z Z FitjFm-itjFitn-jFm-i+tn-j
=0 j=0
m n

L(m,n) = E:, Z Lirilm-itiLitn-jLm-i+n-j -
=0 j=0

Show that

Lim,n) —25F(m,n) = 8LppinFm+1Fner -

H-247 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania .

Show that for each Fibonacci number F,, there exist an infinite number of positive nonsquare integers, [, such
that

Fhs—FFO = 1.
H-248 Proposed by F.D. Parker, St. Lawrence University, New York.
A well known identity for the Fibonacci numbers is
FZ~Fn-1Fpr = —(=1)"
and a less well known identity for the Lucas numbers is
LZ=Lpoglper = 5(-1)" .
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More generally, if a sequence { Yo. V1, } satisfies the equation
Yn = Vn-11¥Yn-2 .
and if y, and y; are integers, then there exists an integer &/ such that
Vﬁ_yn—Iyn+7 = N(-1)".
Prove this statement and show that # cannot be of the form 4k +2, and show that 4V terminates in 0, 4, or 6.

SOLUTIONS
SUM SEQUENCE
H-216 Propased by Guy A.R. Guillotte, Cowansville, Quebec, Canada.

Let G, be aset of rational integers such that

oy = G -
3 | loge| 3, — 22— | =2
=1 m=0 (m)M(Font1)™ .

Find a formula for G,,.

Solution by L. Carlitz, Duke University, Durham, North Carolina.
Put
arctan x - x™ _
e =Y 6nm . Go=Gr=1.
m=0
Then, by differentiation

o
arctan x _ 2 xM
e = (7+X« ) Z Gm+7 m ,

m=0
so that
Gy = Gy +mlm — 1)Gpy-q fm=>1).
It follows that the G, are rational integers.
Consider
o0 (-] G DQ‘ (-
§=3%"log z: —7_ | = Z: fog | exp | arctan ) = Z arctan 1
ot IFD Fon+1 Fan+1
n=1 m=0 MiF 2n+7 n=1 n=1
Since
F. -F
arctan -1 — arctan = arctan ( A Lol ) ) = gretan
Fon Fop+2 FonFoner +1 Fon+1
it follows that
Z arctan L arctan L. arctan 1 = 2
- Fan+1 F2 4
n=1
Hence S=7/4.
To get an explicit formula for G, we proceed as follows. Put
iu —iu 2iu . .
x=tanu=-;7—e, —e_:'Le‘—7, 92/u=7+{X’
[ gt 4 g BZ'U+7 7-ix

that is,
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g2iarctanx _ I+ix

1-ix ~
Thus
i\~ % % %7
parctanx - ((1%ix ) = i) i) #
- —%i i r Yi s = § Y -m -%i %i
_Z( ; )(lx) Z (S)(—IX) = 2_4/ XM Z (—7)$(r/)(s/)
r=0 s=0 m=0 rts=m

it follows that

Gm = i"ml 3 (1) (‘r/') (g')

rts=m

=) 3 (T) (i) (060 + 1) o (40 + 1 — DG = 1) (% =5+ 1).
rt+s=m

A simpler formula for G,, would be desirable.

Also partially solved by P. Bruckman.
PRIME ASSUMPTION
H-217 (corrected) Proposed by S. Krishnan, Orissa, India.
(a) Show that

4n-4x-4 [(2x+2\ _ [4n—2x—2 .
2 (X+7) = (2n—x——7) {m0d4”+7}’

where 71 is a positive integer and —7 <x <Zn — 1, x isaninteger,and 4n + 1 is prime.
(b) Show that

4n-4x-6 [2x +4 4n — 2x — 2 —
2 (X+2)+ (2n—x——1) =0 (mod 4n+3)

where 7 is a positive integer, -2 <x <Zn — 1, x isan integer,and 4n + 3 is prime.

Solution by P. Bruckman, University of lllinois at Chicago, Chicago, lllinois.

Assertions (a) and (b) are fa/se for general n; we may make them true assertions by adding the hypothesis that
4n + 1 is prime, for part (a), and 4n + 3 is prime, for part (b). We may combine the two assertions as follows:
If p is a positive odd prime and x is an integer with 0 <x < %(p — 1), then

-1~ (2;‘) S Vi ) mod ).

The following lemma is useful in the proof:
Lemma. 1f p is an odd prime, then
e (o) = paEle=Z < ()5 fmod p) .

%lp—11] ~ 246-(p—1)
Proof. - 5
1:3-(p=2) _ 1232 (p-2)% _ 13 (p = 2)(~2)(~4) (1 =p)
Z4lp=1)" -1l =] (mod p)
= (~1)%(p-1) H; (mod p) = (-1)%%°"")" (mod p),

as asserted.
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Now, let

— op-1-4x (2x = p—1—2x
Uv=2 (x) . 4 (%(p—“—x)

where p and x are as stated above. Thus,

_ op-1-2x § 1:3 - (2x=1) _ op-1-2x§ 1:3 (p—2—2x)
v=2 {57 b V=2 {2 ==}

Therefore,

_ op-1-2x § (=2x =2)(-2x —4) --(—p + 1) _ op-1-2x§ (2x+2)(2x +4) --(p—1)
V=2 ¥ { (2% — 1)(=2x = 3) ---(—p +2) } (mod p) = 2 { 2x+1)2x+3) (p-2) } (mod p).

Since all the factors in the last expression are relatively prime to p, V%0 (mod p); therefore, v-! exists, and

1 _ 2PTTRX 6 1.3 (2 — 1)(2x # 1)(2x+3) - (p —2)
. 2P-1-2x { 2-4 - (2x)(2x +2)(2x +4) - (p— 1) } (mod p) .

Thus,

vt = ;:4’!) ?p :le (mod p) = (-1)*""1) (mod p) ,

by the lemma. Therefore,

U=(-1)*""y (mod p),
which is equivalent to our assertion.
Also solved by P. Tracy.

STAGGERING PASCAL
H-218 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California.
Let

nXn

nXn
represent the matrix which corresponds to the Pascal Binomial Array.
Finally let
17111 -
17234 .
c= 25914 -
nXn

represent the matrix corresponding to the Fibonacci Convolution Array. Prove A-B=C.
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Solution by P. Bruckman, University of lllinois at Chicago, Chicago, Illingis.

Presumably, the matrix A should look as follows:

17000
0100
01140
0021
By inspection, or otherwise, we obtain the formulas
(1) aj = (’l:]) , for j<i<2j—1; a; =0 otherwise
= j+j—2
@ o= (7713 )

Let O =AB. Then,
i
= k—1 k+j—2
dj= 2, (i—k) ( j=1 )
k=1+[%i]
For convenience, let /— 7=r and j— 7=a, also,let m=i—k. Then,
[%r]

dij = Ops = Z (r,—nm) (r+ss_m)
m=0
Now, let

fjlx) = Z df/Xi_ﬁ: Z Orsx” ;
=1 r=0

then f,-(x} is the generating function for the jt” column of D.

Thus,
=) [%r] hod b
fj(X) =Z x Z (r;’m) (r;‘i;’m) = ¥ x2m Z (r:-nm) (r:i‘;,m) X
r=0 m=0 m=0 r=0
_ XZ,,,Z (Sr;m) (r+sr+m)xr= Z (—sr;7) (—x2)mz (—s-rm—7) (—x)"
m=0 r=0 m=0 r=0
- 2 -s=1 e
= T () T = 1 - A - (15 =2
m=0
i.e., -
fitx) = (1-x—-x3)7.
Since

frx) = (1—x—x2",

the familiar generating function for the Fibonacci numbers, fj(x} is the column generator for the Fibonacci convolu-
tion matrix, i.e., €. Thus, 0 = AB = C.

Also solved by the Proposer.



