LETTER TO THE EDITOR
February 15, 1974

Dear Dr. Hoggatt:

| have discovered the theorem below and was advised to forward it to you as being the most suitable publisher,
should it turn out to be original,
Consider the function
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We make the convention that £, (7)=1 forall x.
Itiseasily established that for all ¢ the coefficient of x (A=1)
gives the coefficient of x™ in F,(n +2), and thus we have:

xFx(n)+ Fyln+1) = Fyln+2).

in Fy(n) added to the coefficient of x™ in F,(n+1)

F1(n) is the Fibonacci series.
Theorem. Any prime factor of F,(P), where P is prime,is congruent to # 7 or 0 (mod P). (We assume P #2 since
if P=2 the theorem is trivial.)

Lewmma 1. Forany ¢,
(e+1)e+2)- (20) = (2)(6) - (40— 2).
This is easily proved by induction.
Lemma 2. The coefficient of x% in F,(p) is congruent to the coefficient of x¥ in the binomial expansion of
( p-1
p+1 2
{x+ ( 7 )J (mod p),

where p is prime, and p #2.
Since p#2, p is odd and Fy(p) is of order
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From Lemma 1 we have
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(mod p). But

(-2)
2 = (2%1 ) (mod p)

and by Fermat's Theorem

(p-1)
( ptl ) =1 (mod p),
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moreover
(%
(:”—:——7 ) =1 (mod p)
since
p-1
+1 ( 2 )
( 2-4— ) = —1 (mod p)
would imply (p-1 h
el Ip
(1) 2 ‘=4( 2')5—7 (mod p)
4 .
or

7-p '

4(p_1—(7)) = —17 (mod p),

applying Fermat's thearem again, and this gives
20=1) = _1 (mod p)
which is absurd since p #2. Thus
(55

= (“L’f—’) 2 (mod p),

and so:

(5! (225 -o) (252 o)

(p—(2+1)(p—(2+2))(p—2¢) _ ( pt1
of 4

of
(mod p) which is equivalent to the lemma.

Lemma 3. F,(p) = +1 or 0 (mod p), where p isprimeand p #2.
From Lemma 2, it follows that ,
o-
(%)

Fy(p) = ( X+‘a—§—1‘) (mod p).

Thus by Fermat’s theorem, either
X = —(L’LZ ) mod p
in which case F,(p)=0 (mod p), or
{Fx(p}}z—l =0 (mod p)
in which case Fy(p)=+1 (mod p).
Lemma 4. {Fuln)}2 - {Fuln=1)} {Feln+1)} = —x™=1) forall n.
This is easily proved by induction on n using the relationship
xFy(n)+Fyln+1) = Fyln+2).
Lemma 5. When x # 0 (mod p), at least one of F, (p), F(p—1), Fx(p+1) iscongruentto 0 (mod p),
where p isprime and p #2.
It follows from Lemma 4, using Fermat's theorem, that
{Futo)}2 = { Fulp =11} - {Fxtp+1) } = 1 (mod p).
Thus if F,(p) #0 (mod p), by Lemma 3,
{Fx(p)}Z =1 (mod p)

{ Fxlo = 1)}{ Fxlp+ 1)} = 0 (mod p),

in which case

and the lemma follows.
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Now if x =0 (mod p), Fyln)=1(mod p) forall n, by the definition of F,(n).

If x £ 0 (mod p), from Lemma 5 there exists a number a such that F(a) = 0 (mod p), we assume that a is the
least such number, and @ > 7 since F, (7) = 7 for all x. It can be shown inductively that F, (n +a) = sFx(n) (mod p)
forall n, where s = F, (a+ 1) (mod p), and s £ 0 since s = 0 would imply Fy (a— 7)=0{mod p). Then if F(r)= 0
{mod p), there exists r” such that

r=r(modal, 0<r <a, and Fy(r)= 0 (modp).

By the definition of @, r” < a is absurd, therefore r’= a.
Let P be prime and p a prime factor of F,(P). Then

FylP) = 0 (modp) and x #0 (modp)
since, if x= 0 (modp), Fx(n) = 1 (mod p) forall n.
Thus P = 0 (mod a) and since P is prime, P=a. Let p” beeither p, p— 7, orp + 7, such that

Fy(p?) = 0 (mod p)

(from Lemma 3). Then p” is an integral multiple of P and the theorem follows.
| mentioned this result to Dr. P.M. Lee of York University and he has pointed out to me that Lemma 3 can be de-
rived from H. Siebeck’s work on recurring series (L.E. Dickson, History of the Theory of Numbers, p. 394f). Acol-
league of his has also discovered a non-elementary proof of the above theorem. . .
| am myself only an amateur mathematician, so | would ask you to excuse any resulting awkwardnesses in my pre-
sentation of this theorem and proof.
Yours faithfully,
Alexander G. Abercrombie
[Continued from Page 146.] Yololodolok

There is room for considerable work regarding possible lengths of periods. For various values of p and ¢ we found
periods of lengths: 1, 2, 8,9, 17, 25, 33, 35, 42, 43, 61, 69.
GENERALIZED PERIODS
For various sequence types, it is possible to arrive at generalized periods. Some examples are the following.
,p—1):20-2,20-3,2p-320—-2,2p,2p +2,2p + 3, 2p + 2, 2p, where p is large enough to make all quan-
tities positive.
(osp): 2p,20+2,2p, 20+ 1,20 — 1,20, 20 — 1, 2p + 1, where p >2.
p—-1,20+1,2p—12p+2, 2p,20+3 20, 2p +2, where p>2 and many others.
(p+1,p):2p0—1,20,20+2,20+4,2p+5,20+4,2p +2,2p, 20 — 1 fpr p > 3. (Period of length 9)
2p,2p+1,2p+52p+52p+5 2p+1,20,2p~3,2p~1,2p—1,2p+4,2p+4,2p+7,2p +3,
p+2,20—-32p—-220-32p+2,20+3,20+8,2p+7,20+4, 20 +4,2p - 1,20~ 1,2p -3,
for p > 24 (Reriod of length 26), and many others.
A schematic method was used which made the work of arriving at these results somewhat less laborious.
NON-PERIODIC SEQUENCES
In studying the sequences (3,4), non-periodic sequences of a quasi-periodic type were found. They have the pecul-
iar property that alternate terms form a regular pattern in groups of four, while the intermediate terms between these
pattern terms become unbounded. This situation arises in sequences (p,g) for which g is greater than p.

As an example of such a non-periodic sequence in the case (4,7) the sequence beginning with 1,3,4, follows:
1,3, 4,37,59, 124, 25, 17, 2,6, 3, 27, 22, 93, 20, 34, 3, 13, 3, 35, 13, 99, 14, 58, 4, 31, 3, 68, 9, 148, 12, 121, 4,
72, 3,129, 8, 312, 11, 279, 4, 179, 3, 317, 8, 751, 10, 663, 4, 466, 3, 819, 8, 1922, 10, 1687, 4, 1183, 3, 2074, 8,
4850, 10, 4249, 4, 2976, 3, 5211, 8, 12170, 10, ---.

Note the regular periodicidity of 3,8,10,4 with the sets of intermediate terms increasing as the sequence progresses.
The various types of non-periodic sequence for (4,7) are:

[Continued on Page 184.]



