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1. IWTRODUCTiON 

Let 

{*nfel and Kfo 
be any two sequences, then the Cauchy convolution of the two sequences is a sequence j cnI ^ whose terms are 
given by the rule 

n 
(1.1) cn = Y^ ®kbn-k+l . 

k=1 

When we convolve a sequence with itself n times we obtain a new sequence called the /?t/7 convolution sequence. 
The rectangular array whose columns are the convolution sequences is called a convolution array where the nth col-
umn of the convolution array is the (n - 1)st convolution sequence and the first column is the original sequence. 

In Figure 1, we illustrate the first four elements of the convolution array relative to the sequence iunl^=1 
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3u\u2 + 3uxu\ 
3u*u4 +6ulu2u2 +u2
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u; 
4u\u2 

4u\ud + Bu\u\ 
4u\uA + 12ulu2u3 +4uxu\ 

Figure 1 
Throughout the remainder of this paper, we let 

(1.2) Rmn(ulrUi,-) = Rmn 

be the element in the mth row and nth column of the convolution array. 
By mathematical induction, it can be shown that 

(1.3) R1n = u? , 
(1.4) R2„ = nunf1u2, 

(1.5) R3„ = nuT1u3+ [n
2)uT2u% . 

(1.6) R4„ = nunf1u4 + 2 ( n
2 ) u12u2u3 + ( 3 ) unf3u3 , 

(1.7) R5n = nunf1u5+ ( J ) u"f2(u2
3+2u2u4) + 3 [3) u^u^S* ( "4 ) u"f4ul 

(1.8) R6n = nunf1u6 + 2(n
2) unf2(u2u5 + u3u4) + 3 ( "3 ) unf3{ulu4 + u2u§) 

+ 4("4)ur4u3
2u3+("5)ur6u5

2, 

193 
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(1.9) 

and 
(1.10) 

R7n = nunf1u7 + i n
2 \ unf2(ul + 2u3u5 + 2u2u6) +\ 3 ) unf3(u% + 3u2u5 + 6u2u3u4) 

+ ("4) u"f4(4u3u4 + 6u2u2) + 5 ( £ ) u°f5u4
2u3 + ( £ ) u ^ i / f , 

R8n = nunf1u8 + 2 ( n
2 j unf2(u2u7 + u3u6 + u4u5) + 3 ( J ) unf3(u%u6 + 2u2u3u5 + u2u% + u§u4) 

+ 4[n4) unf4(u3
2u5 + 3u2

2u3u4 + u2u
3

3)+5 f £ ) unf5(u4
2u4+2u3

2ul) 

+ 6("J)ur6u5
2u3+(

n
7)ur7u7

2 . 

The purpose of this article is to examine the general expression for Rmn and to find a formula for the generating 
function for any row of the convolution array. 

2. PARTITIONS OF m AND Rmn 

A partition of a nonnegative integer m is a representation of m as a sum of positive integers called parts of the par-
tition. The function n(m) denotes the number of partitions of m. 

The partitions of the integers one through seven are given in Table 1. 
Table 1 

Partitions of m 

1 
2,1 + 1 
3,1+2,1 + 1+1 
4, 2 + 2, 1 + 3, 1 + 1 + 2, 1 + 1 + 1 + 1 
5, 2 + 3, 1 + 4, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2,1 + 1 + 1 + 1 + 1 
6, 3 + 3, 2 + 4, 1 + 5, 2 + 2 + 2,1 + 1 + 4, 1 + 2 + 3, 1 + 1 + 1 + 3, 

1 + 1+2 + 2,1 + 1 + 1 + 1+2, 1 + 1 + 1 + 1 + 1 + 1 
7, 1 + 6, 2 + 5, 3 + 4, 1 + 1 + 5, 1 + 2 + 4, 1 + 3 + 3, 2 + 2 + 3, 

1 + 1 + 1 + 4 , 1 + 1 + 2 +3, 1 + 2 + 2 + 2, 1 + 1 + 1 + 1+3, 
1 + 1 + 1 + 2 + 2, 1 + 1 + 1+1 + 1+2, 1 + 1 + 1 + 1 + 1 + 1 + 1 

-n(m) 

2 
3 
4 
7 

11 

15 

Comparing the partitions of m, for m = 7 through m = 7, with the expressions for Rmn it appears as if the follow-
ing are true. 

1. The number of terms in Rmn is equal to ir(m - 11 
2. The number of expressions whose coefficient is ( j ), for/= 7,2, —, m - 7, is the number of partitions of 

m - 1 into / parts. * ' 
3. The power of ut+i in an expression is the same as the number of times t occurs in the partition of m - 7. 
4. The numerical coefficient of an expression involving f n. J, for/^ 7, 2, 3, - , m - 7, is equal to the product 

of the factorials of the exponents of the terms of the sequence 

\Un\n=1 
in the expression divided into/factorial. The exponent for ux is not included in the product. 

In [4], it is shown that these are in fact true statements. That is, 
A77-7 

Rmn(uu U2, -) = J2 ( £ ) uTkpmk(ui, "2, ~'h (2.1) 

where 

(2.2) Pmk(Ui,u2,u*,-) 

k=1 

k! 
a2!ch-f "'<>>m-fl 

ua*ua* ...u
am u2 u3 um ' k = OLj +a3 + — + an 

it(m-1) 

3. SOME FINITE DIFFERENCES 
The first difference of a function f(x) is defined as 
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(3.1) Af(x) = f(x+1)-f(x). 

In an analogous fashion, we define recursively the nth difference Anf(x) of f(x) as 
(3.2) Anf(x) = A(An'1f(x». 

In [3 ] , we find 
m-1 

(3.3) Y. (~1>X \ x 1 ) fM = (-Vm~1&m~1f(0)-
x=0 * 

Using mathematical induction, it is easy to show the following. 
Theorem 3.1. \\f(x) = l r - * + s j thenA'VM = (-1)n (r~xj!_~n \ 

Theorem 3.Z \if(x) = ( r + x
}
+s \ then Anf(x) = [rJO.** ) -

Applying (3.3), we then have 
Theorem 3J. If fix) = (r'xi's ) then 

m-1 

E /fix f m - 7 \ / r- x + s\ Jr + s — m + 1\ 
{ " \ x ) \ 1 -[ l-m+1 ) 

, x=0 
and 

Theorem 3A. tf f(x)= [r + *+s \ then 
m-1 

x=0 

4. THE SVIAIN THEOREM 
Combining (2.1) with Theorem 3.3., we see that, whenever^ = 1, we then have 

m-1 m-1 m-1 
( n-k+1\ ^ 

^mj E ^ ( m ; ' ) v ^ - E '-"* ( V ) £ ("T?) p» 
k'~0 k=0 M 

m-1 m-1 m-1 

E %• E <-»* (m*f)("T') - L *w( ; - n )- *w-» • 
Now, the only way to partition m - 1 into m - 1 parts is to let every part of the partition equal one. Hence, by 

(2.2), we have 
Pm,m-1 = u2 

so that 
m-1 

(4.1) E '-"*( V ) »«K**H 'IF'-
k=0 

From (4.1), it is easy to see that the generating function gm(x) for the sequence | Rm,n+i\ ^=Q > where*// = 1, 
is of the form 

oo 

(4.2) gmM = JlmLxL=Yf Rm,n+1*n • 
(1-x)m 

n=0 

In order to determine the generating function gm(x) for the mth row of the convolution array, it is necessary to 
determine what is commonly called "Pascal's attic." That is, we need to know the values for the columns correspond-
ing to the negative integers and zero subject to the condition of (4.1). With this in mind, we develop the next two 
theorems. 
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Th0awn4.l If m > 2 and ux = 1 then Rmf0 = 0. 

Proof. Letting/7 =/7? -2\n (4.1), we have 
m-2 m-1 

£=0 Ar=7 

/n-/ 
+ I/JT' -

*«/ 
By (2.1), using/as the variable of summation, and Theorem 3.4 with r = s = 0, we obtain 

m-1 m-1 

m-1 _ \~^ / 1 im+k I m - 1 \ p , ,.m-1 U2 = 2^ (~1) [ k )Rmk+u2 

and the theorem is proved. 

k=1 j=1 

m-1 m-1 

- (-Dm E *w E '-"* (m,V)( J ) +u?1 

1=1 k=0 M 

Z-f r™J \ j-m + 1 j 
0 

Theorem4.2. If n > l,m >2m&u1 = 1 then 

rmk 
k=1 

Proof. We shall use the strong form of mathematical induction. 
Replacing n by m - 3 in (4.1) and following the argument of Theorem 4.1 where we let r = 0 and s = - 1 in Theo-

rem 3.4, we have 
m-2 m-1 

m-1 
{-ir'Rm.-l = E ^k+1[mV)R™,m-k-2+ur1 - E <-1>m+k[ m~k1 Wjk-^2 

k=0 k=1 

m-1 m-1 

= (-rr E %• E <-"k(V){k7?) +"2~1 

j=1 k=1 

m-1 m-1 m-1 . . 

= <-Dm E >w E '-"* ( m k 1 ) ( * 7 ' ) - (~1>m E 'w ( 7 H r 7 
/=? fc-0 ' / = / 

/77- f /77- 1 

EM/-^/W-/ rEM7K~'. 1=1 1=1 
Recalling that 

if/? > 1, and/7? > Oand f _ ^ ) = $for all /7 provided m > 1, we have 

{-D^Rm^ = ~Pm,m-1-(-1)m £ (-1)JPmj + u$~1 

so that 
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m-1 
Rm,-1 = E (-V'PmJ 

1=1 
and the theorem is true for/7 = 1. 

We now assume that the theorem is true for al! positive integers less than or equal to t Replacing n by m - t-3 
in (4.1), we see that 

m-2 

f - / r V / ) = E <-1>k+1 (m~k
1) R™>™-t-k~2+u2 

k=0 
m-1 

k=1 

m-1 m-1 

m-1 

£ Mr%,x ; (-Dk ( V ) ( '-**') ^ r ' 
7=7 / f=/ 

m-7 

where the last equation is obtained by the induction hypothesis. 
Multiplying by (-1)m~1 and introducing k = 0, one has 

m-1 m-1 m~1 . x 

7=7 £=0 '' /=* 
m-1 m-1 

= £ ^ / _ , M 7 - ^ 7 )*£ '-«/(7/)'W+^^', 
m-1 

= £ M ; ' ( < ; ' ) / W , 
/=/ 

where the second equation is obtained by use of Theorem 3.3 with r= t and s = j and the theorem is proved. 
We are now in a position to calculate the generating function for the /??t/7 row of a convolution array when*// = 1. 
When m = 1, we see that /?///7 = 1 for all n > 0 so that 

oo 

<4-3> 91M = E *" = 7T7 ' 

By (4.1), we have 
m-1 

R™,n+i-E '-"**' ( V J w ^ / ^ r ' 
A:=7 

so that when m > 2, we can use (4.2) to obtain 
<* m-1 °° m-1 

/7=0 fc=7 /?=$ k=1 

m-l\ m-1 / /r-7 \ itm-1 

M--£M^(VKU^£ 
n=0 / k=1 \ n=1 

oo ,,m-1\ m-i / /c-/ \ m-7 

E / W W ^ ^ j - £ M^'(»•;') W^w + £ ^-nx-"-' U ^ - . 
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Hence, 
m-1 k-1 

(4.4) gm(x) = JzLJEl / m > 2 . 
(1-x)m 

For special sequences 

with u-i = 1, the polynomial in the numerator of gm(x), m > 1, is predictable from the convolution array of the se-
quence. This matter will be covered by the authors in another paper which will appear in the very near future. 
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******* 

LETTER TO THE EDITOR 

February 20,1975 

Dear Mr. Hoggatt: 
I'm afraid there was an error in the February issue of The Fibonacci Quarterly. Mr. Shallit's proof that phi is ir-

rational is correct up to the point where he claims that 1/0 can't be an integer. He has no basis for making that 
claim, as 0 was defined as a rational number, not an integer. 

The proof can, however, be salvaged after the point where p is shown to equal 1. Going back to the equation 
p2 - pq = q2, we can add pq to each side, and factor out a q from the right: p2 = q(q + p). Using analysis simi-
lar to Mr. Shallit's, we find that q must also equal 1. Therefore, (p-p/q = 1/1 - /. However, 0 2 - 0 - / = - / / ^ 7 ; 
thus, our assumption was false, and 0 is irrational. 

Sincerely, 
s/David Ross, Student, 

Swarthmore College 

******* 


