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li\fTR0DUCTI0W 
In this paper, we shall investigate the properties of a recursively defined number-theoretic function y, paying special 

attention to its fixed points. An elementary acquaintance with number theory and linear recurrence relations is all 
that is required of the reader. 

Throughout the discussion, p, q,r, s, t, plf p%, — will denote prime numbers. 
THE FUNCTION 7 

We define a function 7 on the positive integers by setting 7(1) = 1, and for /I/ > 1, 

d\N,d<N 
Example 1: 

(1) If/7 is prime, y(p) = 1. 
(2) 7(4) = 7(D+7<2) = 2. 
(3) 7(12) =7(D +7(2) +7(31+7(4) +7(6) = 7(1) + 7(2) + 70) + [7(1) + 7(2)1 + [7(1) +7(2) +7(3)1 = 8. 
The following theorem clearly follows from the definition of 7. 
Theorem 2. y(/\l) depends only on the structure of the prime factorization of N. 
That is, if N = pfl -pf2 -p^h,y(N) is independent of the particular primes /?/, and depends only on the set 

G^OJ , -,% of exponents. For example, 7(12) = 7(20) = 7(75) since 12, 20, and 75 are each of the form p2q. 
By actually determining the divisors of N, we obtain the following results: 

N 

P 
P2 

pq 

P3 

P2Q 
pqr 

y(N) 

1 
2 
3 
4 
8 

13 

N 

P4 

p3q 

PV 
p2qr 
pqrs 

P5 

y(N) 

8 
20 
26 
44 
75 
16 

N 

ifq 

P3Q2 

P3qr 

P2q2r 

p2qrs 

pqrst 

y(N) 

48 
76 

132 
176 
308 
541 

If N = p®1 -pf1 Ph , we define the exponent of N to be 
h 

i=1 

We now derive expressions for 7/W in a few simple cases, and then proceed to determine the general form. 
Theorem 2. y(pn) = 2n'1. ^ 
Proof. For n = 1, the theorem clearly holds. Assume it true for n = k. Thus y(p ) = 2 . Now, 

y(pk+1) = y(1) + y(p) + ~- + y(pk) = 2y(pk) = 2k, 
since , , , . / k-1 . , k, 

y(1) + y(p) + - + y(pK 7) = y(pK). 
199 
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Theorem 3. y(pnq) = (n + 2)-2n~1. 

Proof. y(pnq) = y(1) + y(p) + - + y(pn-1) + y(q) + y(pq) + - + y(pn-1q) + y(pn) = 2y(pn~7q)+y(pn). 
Letan = y(pnql Then 

an-2an„1 = y(pn) = 2n~1. 

We solve this linear recurrence (using the fact that a0 = 1) to obtain the desired result. 
Before proceeding, it will be valuable to make the following observation. If N = p®1 «/?f2 p^h, then 

y(N) = £ y(d) 
d\N,d<N 

is a sum involving two types of terms: those involving divisors of N which have/7^1 as a factor, and those which do 
not. The sum of all terms of the latter type we recognize as 2y(p?r 1 -p^ p%h). Each of the remaining terms 
is of the form y(pnd), where d properly divides p?2 p%h. Moreover, in each case, d has lower exponent than 
that of N/p^K 

This observation leads us to a proof by induction on the exponent of N in order to find an expression for y/W. 
We first look at the following example. 
Examples y(pnq2) = 2y(p"-1 q2 ) + y(pn)+ y(pnq). 

Using Theorems 2 and 3, and letting an = y(pnq ) , we rewrite this equation as 

an-2a„-i = 2n~1 + (n+2)2n'1. 

Noting that a0 = y(q2) = 2, we solve to find an = (n2 + 7n + 8)2n~2. 

Using this example and observation as motivation, we now derive the general form of y(N) for any N. 

Theorem 4. Let 
A„=P?-P^ Pth. 

where a2 ,a3, —, a^ are fixed. Then 
y{An) = P(nh2n. 

where P(n) is a polynomial in n of degree e = a2 + — + a^ with positive leading coefficient. 
Proof. We shall use induction on a For e = 0, we have 

An = p? and y(An) = 2n'1 = 1/2-2
n 

by Theorem 2. Now assume the theorem true for e < k, and look at Bn = p"-C, where C is of exponent A> and/?x 

does not divide C. By an earlier observation, 
m 

y(Bn)-2y(Bn.1) = Y< ^ / A 
i=i 

where du d2, —, dm are the proper divisors of C. Now each such proper divisor^// of C in the summation is of ex-
ponent less than k. Thus, by the inductive hypothesis, we can rewrite the right-hand side as 

m 

J^ Pi<n)-2n = P*(n)-2n, 
i=1 

where P/(n) is a polynomial of degree the exponent of d\, and P*(n) is a polynomial of degree k - 1 with positive 
leading coefficient. 

Now let a,, = y(Bn). We thus have a non-homogeneous linear recurrence an - 2an-i = P*(n)-2n. We try a particu-
lar solution of the form an = Q(n)-2n, where Q(n) is a polynomial of degree k. Hence we need 

Q(n)-2n-2Q(n-1)'2n-1 = PHn)-2n, 

or Q(n) - Q(n - 1) = P*(n). This will always have a solution Q(n), of degree k, with positive leading coefficient. 
Thus Q(n)-2n is indeed a particular solution to the above recurrence relation. The general solution is therefore 
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an = c-2n + Q(n).2n = 2n(c + Q(n», 

where c is a constant. The theorem is proved. 
This theorem, although giving much information about the nature of the function 7, does not explicitly give us a 

formula from which we can calculate y(N) for various values of N. However, it does tell us that once we kno\Nj(pnd) 
for d with exponent less than k, we can find y(pnd*) with d*of exponent k by solving a relatively simple (yet most 
times tedious) difference equation. 

Doing this for a few simple cases, we obtain the following results: 

N y(N) 

pn 2n-1 

pnq (n+2)-2n~1 

nn„2 n2 +7n +8 0n-1 p q2 ,2 

pn3 n3 + 15n2 +56n+48 , 2
n~1 

6 
pnqr (n2 +6n+6)>2n~1 

pn 2f n3 + 13n2 +42n + 32 2
n~1 

pnqrs (n3 + 12n2 + 36n + 26)°2n~1 

Theorem 5. y(N) is odd if and only if N is a product of distinct primes. 
Proof. Recall the definitcon of 7: 7(1) = 1, and 

l(N> = Yl y(d) 
d\N,d<N 

for N > 1. We cannot directly apply the Mobius inversion formula to 7, since the latter equation does not hold for/I/ 
= 1. We thus introduce an auxiliary function r/ defined as follows: 

„ /«, . = j 1 \\N= 1 
vuv/ I 0 otherwise . 

Then, for all positive integers N, we have 

y(M = Y, 7<d)+ nWh or 2[y(N) - n(N)J =2 £ y(d) = ] T y(d) - r\(N). 
d\N,d<N d\N,d<N d\N 

Let F(N) = 2y(N) - ri(N). We can now apply the Mobius inversion formula to F(N) to find that 

y(N) = J2 V(N/d)F(d) = 2 ^ V.(N/dft(d) - £ \i(N/d)r\(d) = 2y(N)+2 J^ v(N/d)y(d) - \i(N). 
d\N d\N d\N d\N,d<N 

From this, we deduce that 

y(N) = i±(N) -2 Yl v(Mdh(d). 
d\N,d<N 

Clearly, y(N) is odd if and only if ji(/\f) ^0, that is, if and only if N is a product of distinct primes. 

SUPER-PERFECT NUMBERS 

We will call a positive integer N > 1 super-perfect if y(N) = N. 

Theorem 6. pn is never super-perfect. 
Proof. In order for pn to be super-perfect, we would need pn = 2n~1, by Theorem 2. This forces p = 2, and thus 

a contradiction. 
The following theorem assures us of the existence of infinitely many super-perfect numbers. 
Theorem 7. pnq is super-perfect if and only if p = 2 and n +2 = 2q. 
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Proof. By Theorem 3, forpnq to be super-perfect, we need (n + 2)2n~1 = pn q. If n > 2, we must then have/7 = 2, 
and after cancellation, we get/7 +2- 2q, as required. For/7 = 0 ,1 , or 2, the equation leads to a contradiction. 

Since p and q are distinct, the first q and n for which n + 2 = 2q are # = 3 and n = 4, which gives 2* -3 = 48 as the 
first super-perfect number of this form. As it turns out, it is the only super-perfect number less than 1000. 

q n N = pnq (p = 2) 

3 4 48 
5 8 1280 
7 12 28672 
11 20 11534336 

Theorem 8. N = pnq2 is never super-perfect. 
Proof. From Example 2, we know that 

j(pnq2) = (n2 +7n+8)-2n~2 . 
Assume that 

pnq2 = <n2+7n+8)-2n'2. 

For n > 4, this forcesp = 2, which leads to (2q)2 = n2 + 7n + 8. However,we clearly have the inequality 

(n+3)2 < n2 + 7n+8 < (n+4)2 for n > 4. 

Thus no solution exists in this case. If n = 0 ,1 , 2, 3, or 4, we get pnq2 = 2, 8, 26, 76, 208, respectively, none of 
which are possible. 

The following theorems are stated without proof, for the proofs follow the same patterns as above. 
Theorem9. N = pnq3 is never super-perfect 
Theorem 10. N = pnqr is super-perfect if and only if p = 2, and 2qr=n2 +6n + 6. 

q r n N = pnqr (p = 2) 

13 
37 
13 
73 

3 
3 
11 
3 

6 
12 
14 
18 

2496 
454656 
2342912 

57409536 

In all cases, we are faced with trying to find values for n which make a given polynomial in n have a certain prime 
factorization structure. This is, in general, a very difficult, and in most cases, an unsolved problem. 

ODD SUPER-PERFECT NUMBERS 

Recall from Theorem 5 that y(N) is odd only when N is a product of distinct primes. We now use various combina-
torial methods to prove: 

Theorem 11. There are no odd super-perfect numbers. 
Proof. Suppose that/7x, p2, — are distinct primes. Let a0 = 1 and a; = y(p1p2 p,), i= 1, 2, —. Using Theorem 1 

to consolidate terms, we find that 

i=0 
Then 

Let 

n-1 
an %r* - a; / ^ i!(n-i)! n! 

1=0 

n n! 

We thus have 

and b(x) = bjx'. 

i=0 
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tM..* - ± t^.f. bo +± n %*>>=bo+±(£ ^ + 6„\ ,„ __ 2bM_K 
1=0 j=0 n=1 j+j==n • n = 1 \ j = 0 • i 

But a0 = b0 = 1, so we solve to find that 

bM = _ J _ = % (1+ e* + e f l + °Jl+...]. 
2~e" [ 2 4 8 J 

We now expand each term in the infinite sum in powers of x, and then collect coefficients to obtain 
oo oo 

bw= ^ E E 7- ^ (°°= v • 
n=0 i=0 2'n! 

Thus 
oo oo 

i=0 2'nl to 2' 

In order to proceed, we need the following lemma. 
lemma. For fixed k, 

oo 

fkM = £ nkxn 

n=0 
converges for |x| < 1, and is equal to 

PkM 

<1-x)k+1' 
where Pk(x) is a monic polynomial of degree k with non-negative coefficients. 
Proof. The convergence part of the lemma follows immediately from the ratio test. For k = 0, we have 

£*"-£f 
n=$ 

so the lemma holds. Assume it true for k = s. Thus 

Now 

x / , - / , V« s+1 n x(1-x)$+1P-s(x)+x(s+1)Ps(x)(1-x)s x(1-x)P'sM+x(s+1)PsM 
fs+1M = xfs(x) = 2^> n x = 5^5 = ri5 • 

It is straightforward to verify that the numerator is indeed a monic polynomial of degree s+1 with non-negative 
coefficients. The lemma follows. 

Puttingx = 16 in the lemma, we find that 

^0 2n mk+1 

Using the fact that P0(x)= 1 = 01, we can show (via a simple induction argument) that the sum of the coefficients 
of Pk(x) is ki Since Pk(h) < Pk (1), we clearly have ak <2kkL 

Comparing 2 k! with the product k 

n pi 
i=1 
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of the first k odd primes, we see that k = 1 is the lowest k for which 

2kk! < n Pi . 

But once this inequality holds for one k, it holds for all larger k. For by multiplying each side by 2(k + 1), we get 

u+i k k+1 

2k+1(k + Di < n Pr2(k+v< n ph 
i=1 i=1 

smzspk+i > 2(k + 1). 
Therefore, for all k, 

k 
ak < I I pi , 

i=1 
and in particular, a^ is less than any product of k distinct odd primes. We conclude that no product of distinct odd 
primes can be super-perfect, and the theorem follows. 

SIGNIFICANCE OF EVEN-ODDNESS OF A PRIME'S PENULTIMATE DIGIT 

WILLIAM RAYMOND GRIFFIN 
Dallas, Texas 

By elementary algebra one may prove a remarkable relationship between a prime number's penultimate (next-to-last) 
digit's even-oddness property and whether or not the prime, p, is of the form 4n + 1, orp = 1 (mod 4), or of the form 
4n + 3, or/? = 3 (mod 4), where n is some positive integer. 

The relationships are as follows: 

A. Primes == 1 (mod 4) 
(1) If the prime, p, is of the form 10/:+ \,k being some positive integer, then the penultimate digit isei/e/?. 
(2) If/? is of the form 10£ + 3, then the penultimate digit \%odd. 

B. Primes-3 (mod 4) 
(1) If/? is of the form 1Qk+ 1, then the penultimate digit is odd. 

(2) If p is of the form 10/r + 3, then the penultimate digit is even. 

The beauty of these relationships is that, by inspection alone, one may instantly observe whether or not a prime 
number is = 1, or = 3 (mod 4). These relationships are especially valuable for very large prime numbers-such as the 
larger Mersenne primes. 

Thus, it is seen from inspection of the penultimate digits of the Mersenne primes, as given in [1 ] , that all of the given 
primes are = 3 (mod 4). This holds true for all Mersenne primes, however large they may be, for, by adding and sub-
tracting 4 from Mp= 2P - 1 and re-arranging, we have 

Mp - 2P - 1+4-4 = 2P -4 + 3 - 4(2P"2- 1)+3 - 3 (mod 4). 

[Continued on Page 208.] 


