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1. INTRODUCTION 
We form the complete convolution array for a sequence whose generating function is 

oo oo 

(i.i) rf*; = £ V - £ aw1 

i=0 HO 

with f(0) = f0 = aQ0 1 0, and let 
oo 

(1.2) [f(x)]'+1 = J2 a}jx
j, j = 0, +1, +2, ±3, - ; 

i=0 

note that 
a><-l " d',o - \ df [fo 

This convolution array is the source of an infinite number of sequences which are intimately related to the coefficients 
of fix) 

Form a new sequence whose generating function Si (x) is given by 
(1.3) Hf(x) = SJx) 
and 

oo oo 

(1.4) S i M = E - 7 7 * ' * £ * / * ' • 
j=0 1=0 

We call the sequence J SX^Q the H-convolution transform of the sequence I fj\T=o, out it is easier to express 
this relationship between the generating functions. That is, / / • [ / ; J-£0 = | SJI^Q is expressed Hf(x) = Sx (x). 

in the next section we shall prove that, if Hf(x) = Sx (x), then f(xSt (x)) = St (x) with f(O) = St (0) j 0. It is well 
known that 

b-5> C"%-T7('") 
defines the Catalan numbers, whose generating function is C(x) - /"/ - \/l - 4x]/2x, Let f(x) - 1/(1 - x). The 
Catalan generating function satisfies 7 +xC2(x) = C(xl This implies that 1/[1 - xC(x)] = C(x). That is, if 

fix) - 1/(1-x), 
then 

f(xC(x)) = 1/[1-xC(x)] = CM, 

so that from Pascal's triangle generator we get the Catalan number generator; H(1/(1 - x)) = C(x), C(0) = 1. 
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t LAGRANGE'S THEOREM 

Lagrange's Theorem: (As in Polya and Szego [1]) 

Let f(z) and $(z) be regular about z = 0 and f(0) ? 0, $(0) f Q, and z « m^izl Then 

Hz) a y a£ dn(f(xhnM) 
1-00ip'(z) ^ n! > n 

n=0 "<* X=0 
Since 

</>ft?J ^ 0, and co = z / V / y - g(z), 

if flz^ = /, then we are dealing only with reversal of power series [2] . 
We now use Lagrange's theorem to prove our major result. 

Theorem 1. Let f(x) be analytic about x = 0, with f(0)^0, and 

mii+1 -Y* *n*s-
i=0 

and let 

then f(xSx (x)) = St (x), and St (0) = ffO) / 0, 

Proof of Theorem 1. Let 

S>M-Y.lh*'> 
1=0 

*// J+1 

xWUfh*''-
then 

MO 

JL (xsjx)) - £ ;*' - £ ^77 ^ ^ 
/«0 /-0 dx' 

.jr«0 

which can be visualized for Lagrange's theorem as 
oo , 

£ (*SJx))=ZX
T^Mf'ML=o> 

•I=SQ dx 

or 
/ (XSJX)) = —&L-T, 
dx l 1 - xf(z) 

with co =x and $(z) = Hz). From z = xflzjj, * ^ 0, 

df x ~z dz (2.1) 

and so 

(2.2) 
Thus, 

which implies thatxSJx) = z +c;bu\xSl(x)-^% andz-* 0 asx-»Q. Thus, c = QmdxSJx) ~z. Thus, 

xSJx) = xf(xSJx)) 

1-

dz 

-xf'(z) = 

d 
dx 

X -Z 

/ — _ 
X 

(xSJx)) -

X2 

dx 

_ dz 
dx 

1 

L 
X 

, 

dx 
dz " 
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or 
SJx) = HxSJx)) = Hz), 

From z = xf(z) to z =xS1(x)\s& reversal of power series, and a necessary and sufficient condition for SJx) to be 
regular about x = 0 is that x = z/[f(z)] = g(z) be such \\\dXg'(0)? O. Clearly, this is guaranteed by f(0) ? 0, since 

g'(z) = ff(z)-zf(z)J/P(z) and g'(O) = 1/HO) ¥ 0. 

See Copson [2]. 
We thus see that if f(x) is regular about x = 0 and f(0)¥0, then Hf(x) * S% (x) is a function such that HO) = S, (0) ¥ 

0 and f(xSJx)) = SJx), %n&Sx(x) is regular about x- 0. 
Corollary. $(z) = S(x), where ip(xSM) = S(x). 

We now proceed to another important 
Theorem 2. Let fix) be regular about x - 0 and HO) ¥ 0, and 

[f(x)l i+1 

i=0 

i* 0,1,2,, 

and 

GJM = E j{j aU+Hx'' • 
1=0 

Then GJx) = s{(x) for/ = 1,2,3,-
Pro of of Theorem 2. 

* biM - L. {i+i)u 
1=0 dx1 x=0 

or 

dx 
xj dHfHx)flM (xJGj(x))=jx"J^^^(zh 

•^n L dx1 
i=0 )K=0 

= ixhlfl(z) = ixHfl-l(li <k. 
1-xf'(z) JX {Z) dx' 

with ca =x and Hz) replaced by fJ(z);the last step follows from (2.2), the result in the proof of Theorem 1. Thus, 

which implies that xJG/(x) = zJ + c. SincexJGj(x) and zJ -> 0 asx -+ 0, then c = 0, so that 
GJx) = zj/xj = fj(z) = S{(x), 

since the same hypotheses of Theorem 1 are used in Theorem 2, and there Hz) - Sx (x). Thus, 

x=0 

]C jij aU+Hx' > i=1,2,3,-. 
i=0 

The next theorem is harder to prove. 
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Theorem J . Let f(x) be regular about x = 0, f(0) ? 0, and 
oo 

[f(x)]l+1 - £ *n*'> i = 0,1,2,-. 
HO 

Let 

G_jM _- £ 'dL I dUrlMtim 
x=0 

where the prime indicates/V/l Then 

G-iM+x' d' 

Proof of Theorem 3. Clearly the missing term is indeterminate since 

JL (foM) 
dxi x=*0 

fOJf/VO; 
" \ U f / = 0 ; 

in either case, the missing term is 0/0. Now 

i=*0 

x!2 dl(rJ(x)fl(x)) 

dx1 
x=0 

so that 

-f (x-^M) - -fie*' £ 4 dJldlM 
dX

 lmn ' ! dx1 
i=0 x=Q 

[DEC. 

Thus, by Lagrange's theorem, with co = x, ip(z) = f(z), and Hz) replaced by (f(z))~J, and by the result (2.2) in the 
proof of Theorem 1, 

-i-fx-iG-jM) = -jx+1rh1M %-* -}2~H £ - , 
dx J dx dx 

since z=xf(z), so that 

and 
x^G.j(x) = z~J' + c, 

G-j(x) = rJ(z) + cxJ = S'/M + cx1. 

Recall that G.j(x) has a zero coefficient forxy. Thus, we can get equality if and only if 

i 4 (Sj(x))\ 
x=0 

which concludes the proof of Theorem 3. 

3. APPLICATIONS OF THESE THEOREMS 

The three theorems we have proved now give us an explicit set of instructions on how to convert the entire con-
volution array generated by the powers of f(x) into the entire convolution array for S1 (x). 

The central falling diagonal is converted into Sjx), and the diagonals parallel to this are explicitly converted into 
S[ (x) for all integral j, where f(O) = St (0) and f(xS1 (x)) = Sx (x). We have in reality explicitly derived series expan-
sions for all S[(x) in terms of the entries of the convolution array for f(x). This is 
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(11) siM^Yljlj'iWx'' 
HO 

where 
a..M. , - / d'(f'Mf'M) 

dx x=0 

for all integral/, with special attention given when i+j= Q, as earlier discussed. This, of course, can now be repeated 
any number of times. 

A particularly pleasing special case of sequences of convolution arrays arises upon taking fix)- 1/(1 - x), giving 
rise to the generating functions for the columns of Pascal's triangle. This paper proves and generalizes the results 
found when considering Catalan and related sequences which arose from inverses of matrices containing certain 
columns of Pascal's triangle [3] , [4 ] , [5] , [6]. 

4. FURTHER GENERALIZATIONS 
We can, of course, apply the convolution transform H to fix) several times. Hf(x) - Sx (x) means f(xSx (x)) = Sx (x), 

and H2 f(x) = S2 (x) means that HSX (x) = S2 (x), where Sx (xS2 (x))« S2(x). Further, we can show f(xS\ (x)) = S2 (x) 
as follows: 

f(xSJx)} = Sjx); 
replaces byxS2(x) to obtain 

f(xS2 (x)Sx (xS2 (x))) = f(xS\ (x)) = Sx (xS2 (x)) = S2 (x). 

In general, one can show that, if 
Sk(xSk+1(x)) = Sk+1(x), 

then 
(4.1) Hkf(x) = Sk(x) and f(xSk

kM) - Sk(x). 

Thus, one can secure an infinite sequence of generating functions from one generating function, f(x). 
We can now discuss the inverse convolution transform, H~ . From f(xSx(x)) - Sx(x), we \ookatSx(x/f(x)), 

replace x by xSx (x), so that 
Sx(xSx(x)/f(xSx(x))) = Sx(x) = f(xSx(x)); 

thus 
Sjx/f(x)) - f(x). 

H"1SX (x) = f(x) means Sx (x/f(x)) = f(x). If we designate f(x) = Sjx), then 
H'SJx) = $x(x), 

and, in general, 
(4.2) HkSjx) = Sk(x) and H"kSjx) = S-k(x), 

generating a doubly infinite sequence of generating functions from the convolution array for fix) - S0 (x). 
We now derive the explicit formulas for these. 
Theorem 4. 

HO 

Proof of Theorem 4. 
We consider the elements an of the convolution array for f(x) such that f(0) ? 0 and 
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[f(x)]l+1 - Y, aUx' > 
i=o 

j an integer. We proceed first for/ positive. 
For5j (x), the elements processed are an; for S2(x), the elements processed area/^;; and forSk(x), the elements 

processed are */,£/. This isf of course, done sequentially. Consider the element a ^ / ^ / . We now find the sequential 
factors to convert it into the coefficient of x1 in SJ

k(xj. 
First, we consider the diagonals parallel to the principal falling diagonal a//;the diagonal S\ +I (x) contains 

ai,ki-f-j<*l and "was multiplied by 
(k-1)i+i 

ki+j 
Sn the diagonals parallel to the a,t2i, the diagonal s'k~2'l+Hx) contains^/*/-/. and was multiplied by an addi-
tional factor of 

(k-2)i+i 
Ik-1)i+j' 

and so on. In the diagonals parallel to a,-^,-, SJ
k(x) picked up a factor of j/(i+j). Thus, for the terms of SJ

kfx) 

oo 

SkM - ,L jij • 2ftf -177/ "*'+* 
i=o ' 

i=0 

This can also be established by induction. Look at ajjk+Di+j-1- Each factor we used before has its right subscript 
of ajj advanced by / so that 

oo 

$'k+lM = 2- , (k+i/yl+j
 ai,(k+1)i+Hxl • 

This holds for/ = 1, 2, 3, — , and concludes the proof of Theorem 4, for/ positive. For/= ft S°k(x) = I For/< 0, 
there are special problems to surmount 

Theorem 5. if f 1(xSk(x» = SM, with S(O) = f1 (0) ? 0, then Six) = $~JkM. 

Proof. The function f1(x) induces a two-sided sequence of generating functions. From F 1 (xSk(x)) = $(x), we 
imply 

S(x/(r1(x))k) *f1(x) 

s(xfkM) « rUxi 
S'Uxfk(x)) = f(x). 

ButS-k(xfk(x)) = f(x), so thatSM = S~JkM. 

Theorem 6. For / > 0,k>0, 

<rhxi = T _ L ^lifhEM^Ml 
x=0 i=0 

Proof. Apply Theorem 4 to the function F(x) - f1 (x). Thus for/ > 0 and /r > 0 

/t ri'frUxDhf-k/vni 

1=0 ' dx \x=:0 

s:iM = T -d-. *± lLr1M)HrkMV 
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This is equivalent to the theorem. 
SUMMARY: 

(4.3) 
/=0 J dx' x=*0 

now holds for/ > 1, k> 1, o r / < - / , k < - / . The case/= ft k£0\% routine and Ar = 0 for any /is routine. 
We note that in the proof sequence of Theorem 4, there are no zero factors except when/- 0. 
Theorem 7 (The Completion of Theorem 4). 
If f(z) is regular about z = 0 and f(0) ± ft then, for k t ft 

when -j/k?m, a positive integer. 
The prime below indicates /V/w, 

4 ^ - E r f - i d'(flMfki(x>> 

Uk' ' '' dx' 

Sik(x) = *£z+i M^M 

x=0 

x=0 

, xm dm(f'(x)fki(x» 
ml dxm 

when -j/k = m, a positive integer. 
Proof of Theorem 7. Let 

i=*0 

^x=0 

J— *f ^(fUxH^M) 
dx'' x*0 

for/Yft .and#0M = I 

Case (i). 

Taking the derivative, 

(4.4) 

But 

g,M" hl+iTk ~ *** x=0 

_d_ 
dx ;=:n dx i=0 

= Lxl
/k-1flMx-d-L . 

k z dx 

z = x<p(z) = xfk(z). 

I where fk(xS(x» = 
f(xGk(x)t - G(x) 

G(x) = Sk(x) 

x=>0 

From the corollary to Theorem 1, fk(z) = S(x), where fk(xS(x)) = S(x). To identify Six), recall that 

implies that 
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as defined for fix); hence, 

%*\\\z\f(z) = SkM-
Returning now to (4.4), 

= nk S(x) = GK(x) « S£(x) 

From z/x = ^(z), then (z/k)1/k = f(z), so that 

fhk(z) = (z/x)(hk)/k and x'^k'1&k{z) = zi/k'1 

Therefore, 

so that 

Thus, 

From the definition of 
91 

xj/kgj(x)- zi/k + C 

9i(x) , ^U Cx'"k . 

f(x) = fi(z) + Cx'i/k - si(x) + Cx-i/k. 

a.(vi = V —1— xi- d'(fj(x)fk,'(x)} 
gi[X} Z-r jk+j a . / x-0 

where -j/k ^ m, a positive integer, we see that # / M has a Maclaurin power series. Further, Sk (x) is regular about 
x = 0,Sk(0)?0, and hence 5j( W i s regular about x - t f a n d ^ / W ^ t h u s S ^ M a l s o has a power series expansion. 
Their difference is a power series so that if -j/k ?m,a positive integer, then (7=0, and the proof of part (i) is com-
plete. Since S°k(x) = 1, then Theorem 7, part (i), is valid for all integral/and S0(x)~f(x) does not need such a form. 

Case (ii). If -j/k = m, a positive integer, then 

gJiX/ Ls ki+j // . i 
j=0 ' dx x~0 

when written as above has an indeterminate term; thus, as in the form in part (ii), it should be primed. Thus,#/M 
has no term when ki +j=Q, so it is necessary and sufficient that in 

9jM = SiM + Cx~l/k , 

1 d -mk / 
m . m m dx x=0 

This completes the proof of part (ii). 

Theorem 8. When -j/k^m, m a positive integer, 

sUx) 
LJ ki+ a,> 
i=0 

ki+j-lX 
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When -j/k = m, m a positive integer, 

k *-*> ki+j ''*' ' ' ml H„m K Ml 
x=0 

Theorem 8 is simply a collection of results in terms of 

Theorem 9. Let 

then 

fi+1M = £ a,fx'. 
HO-

f(xSk
kM) = Sk(x); 

yx-^L (s-k*(x))" 
*~> ml ^..m K ml Hvm 

x=0 

Proof. Let 

then 
f(z) = 7, z = xS?(z); 

fk(x) / (xf*(x)f 
dx 

-k, 

V >£• -JO (S'k
k(x)) 

m=0 dx x -0 

x_dz_ 
z dx / 

where 

but 

so that 

That is, S(x) = fk(x). Further, 

so that 

-k, z = xS(x) and Sk
K(xS(x)) = S(x), 

Sk(xfkM) - f(x), 

Slk(xfk(x)) = rk(x). 

x/z = S~k
k(z) = S^(x)= fk(x), 

(4.5) -£-> ml -,..m K 

m=0 ml dxm x -0 
dx 

Since fI+1 (x) is implicit in our problem, we can express Eq. (4.5) in a better form. 

[f(x)]i+1 - £ a„x' 
i=o 

1*M = £ ai.K-ix' 
i=0 
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oo 

i=*0 

*rkM - £ * w / + / 

i=o 

i=o hO 

Let 

fkM £ fxr*M) = £ AmXm 

then 

flf-Y 

(4.6) Am = £ at,k-lbm-t,-k-i s E (m + 1 ~ t)*tk-lam-t,-k-,l, k f 0. 

Comment: For each SJ
kM, there is one term (when -j/k = m, m a positive integer) that is not easily specified by 

the convolution array for f(x). With Theorem 9, we now know how to get that missing term in terms of the convolu-
t ion array coefficients for f(x) as given in Eq„ (4.6). 

B, FURTHER GENERALIZED IDENTITIES 
The following is a consequence of Theorem 8 for -j/kf6mf a positive integer. 
Theorem 10 (A Generalized Identity) 
Let 

GiM '•* E jitr WW1 = S*M> 

oo 

GsM = E kfTJ ai,ki+s-ix! * Ss
k(x); -s 

hO 

then 
oo 

Gs+jM = E kiTJ^T) *W+*+Hxl = SpM. 

Thus, by convolution it is true that 

ki+ts+j) 
HO 

(5 '1 ) k^TJ an,kn+s+H = E ]^Jat,kt+H jfaZJjTJ *»-*("-*>+*-1 
t=*0 

Corollary 3 (Abel Convolution Formula) 
Letf(x) = ex and k= 1 in Theorem 10;then by exponential convolution, 
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n+s+j t-d \t/t+j n-t+s 

Corollary 2 (Generalized Abel Convolution Formula) 
Use Theorem 10 with fix) = ex and k a positive integer; then 

j-ifJ-[(„ + ,» + ,+,-V" 

= i(nt)itj[(t+m+;i-i]t ki^TTj "°-t+'**'- ^~r-
t=0 

See Raney [14], who conjectured this form. 

Corollary 3 (Hagen-Rothe Identity) 
Let f(x)=(1+x)a, k= 1, in Theorem 10; then 

n 
S+j / afn + $+J) X = y ^ S /af t + s) \ j / afr? - t */7 \ 

n +s+j ^ n / Z«* £*s \ f / n-t+j * *> - ? ' ' 

Corollary 4 (Generalized Hagen-Rothe Identity) 
Let fW= /7 -/-*>/aand&bea positive integer in Theorem 10; then 

S+j £a[kfn) + s+j\ 
kn+s+j v n / 

n 
L_ * a[(k)t+j \ S fa[kfn-t)+s\ 

kt+j \ t ) k(n-t)+s \ fl-^f / 

6. FINAL REMARKS 

I. Schur in [8] has done much in this area. Schur [8] and Carlitz [7] give derivations of Lagrange's theorem. H„ 
W. Gould in [13] has summarized much of what has been done earlier. There is still much that can be done for 
specialized functions f(z). 
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******* 

[Continued from Page 356.] 

Proof. Since 2) is a non-discrete topology on X there exists c &K with \c\ <£%. Let A be the topology on X 
generated by 

and notice A is non-discrete since { c J <£ A. 
Consider 

S = n\A e A\c e A\ . 

Since A is finite if S= { c j then j c j e A. Thus, choose b e $\\c\. Let 
r = \B C X\b £ 5 or c £ B\ . 

Let7"e A . l f ^ e TthenSc 7"andsoZ?e 7" which implies 7"e I \ If c£ 7" then f e Y by definition of T. Hence 
S c A c T. 

Corollary. Every non-discrete topology on a finite set with n elements is contained in a non-discrete topology 
with 3( l " ' 2 ) elements. 
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