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Since (a,b) = 1 the second equation of (12) yields either

(14) b = +t2, a = ¥53*
ar
(15) b = +512, a = Fs? .

Equations (13) and (14) yield
(F10s* +12)" - 5t* = 4,
By (5), the only integer solutions of this equation occur for = 0, 1 or 12. But none of these values of ¢ yield a value
fors. Equations (13) and (15) yield
(F252 + 512)° — 125t* = 4,
By Lemma 2,t=0,s=1,a=+1,b=0, L, =1 The proofis complete.
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[Continued from P. 339.]

Since
fa/~1) = (b/~1) = 1,
therefore
(-a/~b)(—b/~a) = (a/b)b/a)(—1/a)(-1/b)
= ((—17a)/(-1/b))(—1/a)(-1/b)
=1
if and only if
(—1/a) = (-1/b) = 1.
Therefore,
(4) (—a/~b)(~b/-a) = —((—1/-a)/(—-1/-b)).

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of
fa/~1) = #1, (b/~1) = #1, (-1/a) = £1 and (-1/b) = #1.
Corollary 1. 1fa=00r1(mod 2), 5 =1 (mod 2) and (3,b) =1, and if 2, =a, (mod b), then

(a,a,/b) = ( (i(l[;z—_/i_)l{ )

In other words, (a,a,/b) = 1 if and only if a, a, is positive and/or b is positive.
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