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In a recent paper [1] , J. L. Brown, Jr., and R. L, Duncan showed that the sequence *{ QnFn I is uniformly dis-
tributed modulo 1 (u.d. mod 1), where c/7 denotes the natural logarithm and Fn is the/?f/7 Fibonacci number. In this 
paper we show that some modifications of these ideas have some interesting consequences concerning the distribu-
tion of the first digits of the Fibonacci numbers. This also answers a question raised in Problem H-125. 

It has been noticed, and proved in the probabiiitic or measure theoretic sense, that the proportion of physical con-
stants whose first significant digit is less than or equal to a given digit a (in base 10), is log10 (1 + a). See [2] , [4] . 
We will show that a wide class of sequences, including the Fibonacci numbers, have a natural density satisfying a sim-
ilar distribution. Hence, roughly speaking, a large percentage of the Fibonacci numbers have a small first digit. 

Let h be a given positive integer. All of our numbers will now be written in base b. Let j an I be a given se-
quence of positive numbers. For any digit d in base b, let x^ = number of n < x such that the first digit of an is < d. 
More generally, if 

define 
a - aQbk + aih

k~1 + - , a0 ? 0, 

ab~k 

so that 1 <a*<band a and a* have the same digits. Then if X is any number 1 <\<b, define x ^ - the number of 
n <x such that a* <X Also, let x\(k) = the number of n <xsuch thatZ?^ <an <X6 / f . Hence 

We will say that a sequence 4 an J- is logarithmicly distributed (LD) if x\~x log X, where log means log&. The 
connection between this type of distribution of first digits and uniform distribution mod 1 is given by: 

Theorem 1. \ an I is LD in base b if and only if j l o g a ^ i is u.d. mod 1. 
Proof. 1 < a * < X, if and only if bk <an< Xbk for some integer k, if and only if k < log an < k + log X for 

some integer k, if and only if (log an) < log X, where (m) denotes the fractional part of m. Hence * \ = number of 
n <x such that (loga,,) < log X, and $ox\~x log X if and only if i l oga^ i is u.d. mod 1. 

Corollary 1. | a n > is LD if and only if a is not a rational power of b. 

Proof. This follows immediately from the fact that 4 /? loga I- is u.d. mod 1 if and only if log a is irrational [3], 
This last result follows from Weyl's theorem that i jSy I is u.d. mod 1 if and only if 

n 
im ^ V eMhfil -Y. 

» - - • M 

for all integers h > 0 [3] . 
Using Weyl's theorem and results concerning trigonometric sums, we can show that sequences such as j a n\ and 

I nn J- are LD where pn denotes the nth prime. 
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The following results can be proved using Weyl's theorem, but they can also be obtained directly from the defini-
tion of xx without recourse to any considerations of uniform distribution. 

Theorem 2. If j an j is LD then 
(i) | can [ is LD for all constants c> 0, 
(ii) j an | is LD for all positive integers k 

(iii) { Van \ is LD 
(iv) \pn] isLDif |3r a~an. 

Proof. We illustrate the methods used by proving (iii). 
Let S = | an | be LD and let S' = j 1/an j . Let x\ refer to S, x'x refer to S', etc. Then 

if and only if 

hence 

which implies 

b* < JL < uk 

{ b~k < an < b'k 

A 

*x = E X'\M = E **M~ «-%W- « 
- *6 - * 6 A -̂  A- — x log (b/k) ~ x log X. 

We are now ready to show: 
Theorem 3. | F„ ] is LD. 
Proof. 

Since 

Now 

is LD by Corollary 1, 
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is LD by Theorem 2-(i), and so Fn is LD by Theorem 2-(iv). 
Theorem 3 is easily extended to other recurrence sequences. 
It should also be noted that examples can be constructed which show that 

| an j. and \ ft, } 
LD does not imply that any of 

{a1
n

/k}, \an$n], or \an + &n) 

are LD. It might be interesting to obtain necessary and/or sufficient conditions for these implications to hold. 
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[Continued from P. 333.] 

if and only if 
l-1/a) 1 (-1/h) = -1; 

<(-1M/(-1/-b)) * -1 
if and only if 

(-1/a) t (-1/h) = 1; 
((-1/-a)/(-1/-b» = -1 

if and only if 
(-1/a) = (-1/h) = 1. 

Now stipulate that 
(a/-1) = (b/-1) = 1. 

Then, by the classic Law of Quadratic Reciprocity, 

(1) (a/b)(b/a) = ((-1/a)/(-1/b)). 
But 

(-a/h) = (a/b)(-1/b) 
and 

(b/-a) = (b/a)(b/-1). 

Since (h/-1) = 1, therefore 

[Continued on P. 339.] 


