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1. INTRODUCTION

In this paper we consider some simple variations of the derivative and the difference operator; deriving formulas
for powers and factorials.

Let s(n,k) denote the Stirling number of the first kind and S(n,k/ denote the Stirling number of the second kind.
They are defined by:

n
(1.1) (xhy = D, sl klx®
k=1
n
(1.2) X =" Slnk)ix)
k=1

where
(X)y = x(x=1)(x=2) (x—-n+1).

Substituting (1.1) in (1.2) or (1.2) in (1.1) shows that
an = Zsnk)by and bp = ZS(n,kag
are equivalent (inverse) relations.

Define
n
(1.3) Anlx) = Y slnkix®
k=%
n
(1.4) A pe) =5 (=1 st kix
k=1
(1.5) Bnlx) = 3" Snkixk
k=1
. n
(1.6) BM(x) =" (~1)"Hstnkixk

k=1

Then A, (x) = (x),, the falling factorial; A ("}(x) = x(”), the rising factorial and B,,(x) is the single variable Bell poly-
nomial [3, p. 35]. We have A, (B(x)) = x" = B,(A(x}), etc., where (B(x)* =By (x), (Alx))¥ = A (x).
We will employ the following special notation:

(1.7) [6¢]" = 079"
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and if
n
folx) = Z B;Xi
=0
then
n . n .
fl0g] =Y ailogl’ = aif'e’ .
=0 =0

REMARK. When 6 and ¢ commute orn = 7 then
Be]" = (0¢)" and fal9¢) = £,[00].

2. THE OPERATORS x0, Dx, x4, Ax

Operators of the form (x0)”, D"x", (Ax)", etc., are often difficult to work with and we seek equivalent forms.
First we note that

n
(2.1) D)y = AnlxD) = " Stnk)(xD)* = x"0"
k=1

follows by induction from
(xD)ies1 = (XD (xD — k) = x¥0¥(xD — k) = x*(D*x)D - kx*D¥
= xK(x0k + kD*"7)p — kxk Dk = xK*1pk*T

[0}

But (2.1) admits the inverse

(2.2) (xD)" = ES(nkx*D* = B, [xD] .
Equation (2.2) can slo be shown directly using the recurrence for S(n,k) (4, p. 218].
Similarly,
n
(2.3) (xAly = An(xD) = 3 alnk)xA)K = x™ A"
k=0

follows by induction from
(XA Jge+1

(XA = k)(xA )i = (xA — kix® Ak = § xax® — I} A
xx A+ kot + 1)1 1kt + 1) TN — g K }Ak
= {xx(k}A +kxix + 1)K TA }Ak = (x +hx®IAAK = x K+ pKHT
But (2.3) admits the inverse
(2.4) (xA)" = S kix®/ Ak = B,,[XA}

where x/ = x(j},

Since

(0x)" = x~(xp)"*'p~1 and (Ax)" = x“Txa )" AT
we have from (2.2) and (2.4), respectively,

n+1
(2.5) (0x)" = x"Bpygx0ID™" =Y Sto+1,ki*10%1
k=1
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n+1
(2.6) (Ax)" = X By kATA™T = 3 S+, k)ix + 1)V ak=T
k=1
Using Leibnitz's formula for the derivative of a product we get;cf. [1.p. ]

n n n
non _ n k. npn-k _ n n-k pn-k _ n n! n-k nn-k
D"x —Z(k) (D*x")D "Z(k) (n)ex""D _Z(k)(n—k}/X o"
k=0 k=0 k=0

Replacing n — & by k we have

2.7) DY (;) %xkﬂk )
k=0 ’

Using
pRHT kAT = pkdk*Tp 4 kv ik } = DRk {xp +k+17}
we have by induction
2.8) D" = (x0+1)™ = (0x)™ = A'(py),

Since
(XD)(n} - (XD}(XD‘l‘ ”(n-I) = (XD}(DX)(H_” = XDDH—IXn-i
we have
(xD)™ = xpxn-1

Using the difference analogue of Leibnitz's formula [2, p. 96] we get cf. [1, p. 4],

n n n
A = S (z) Arkgkyliak = 57 (7)) Amkieriak = 37 (Z) (0ot (x +n) ®I 2K

k=0 k=0 k=
Hence
n
(2.9) Ay () Z ( n )%_(X_,_n)(k)Ak '
k=0
Using
AR e )err = AX(A(x)err) = Ak{ (X)k+1D + (k + 1)(x)g + (k + 7)(X}kA}

A"(x)k{(x-km+(k+ 1)+ (k + 7)A}
= AXhixA+ A +1+k) = AX(x)e(Bx +k)

we have by induction
(2.10) A(x)p = (Ax)™ = A (Ax).

But
Alxl(n) _ Ax+n—1), = (Alx+n— 7))(");

hence using Ax = xA +A + 7 we have
(2.11) A0 = (e +n)A + 1) = ((x +0)A +0), .
Taking the inverse of (2.8) we have

n
(2.12) (0x)" = Y (~1)"*Snk)0*x* = B™ [Dx] .
k=1
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Taking the inverse of (2.10) we have

n
(2.13) (Ax)" = 3 (~1)"*SMnk)aK )i = B™ [Ax)

; k=1
where x’ = (x);.

Since
00)™ = (x0) (x0)"  and  {x0)™}" = (x0)™
we have by (2.2)

(2.14) Bm+n [xD] = By, [xD]B,[xD], (Bm [xD])" = Bpp[xD] .
Similarly (2.4) gives
(2.15) BminlxA] = B [xA]Bn[xA], {B,,,[XA/}" = BnlxAl.

Similar results also hold for 8%/ /0x/ and B(k)[Ax].

3. THE OPERATORS x(/ + D), x(1 + A), (I +D)x, (I + A)x
Analogous to (2.1) is
(3.1) (x(1+D))y = An(x(1 +D)) = x"(1+D)" = [x(1+0)]"
which follows by induction from
(x(1 + D)Ji+1 = (x(1 + D)y (x(1 + D) = k) = x¥(1 +DJ¥(x(1 + D) - k)

= xKdxt1+ 0/ 4 kl1+0)* — k(1 +0)* } = XK1+ 0)K*T

But (3.1) admits the inverse

n
(3.2) (x(1+0))" = Slokh*(1+ D) = Bplxti +D)] .
k=1
Since
(1+0)x)™ = x™T(x(1+0))"* (1 + )77

we have
n+1
(3.3) ((1+0)x)" =Y S+ 1, kix* (1 +0)<7
k=1
Using

(1+0)" ™ = (1+D)(1+ DT = (1+D)"x " (x +xD +n+1) = (1 +D)"x"((1 + D)x +n)
we have by induction
(3.4) (1+0)7x" = ((1+0)x)™ = A™ 11+ D)x)
which admits the inverse

n
(3.5) (1+0)x)" = 3 (=1)"Kstn k)1 + D)k = B 11+ DJx] .
k=1

By (3.4) and since (/ +D)x = (x +xD) + 1,

(1 +0))™ = (x +x0)™ = x(1+D)((1 + D)™ = x(1+ D)1 +D)" ™
Hence
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(3.6) (x(1+ D)™ = x(1+D)"x"T .

By (3.1) and since
(x +Dx)p = (x+Dx)(x +xD)p

we have
(3.7) ((1+D)x)y, = (1 +0)x"(1+0)"" .
Using (1.4)
n
(3.8) i+ A)™ = 3" (1) Ksok)xtt + A)* = AT t1+ A)).
k=1-
But,
(3.9) x(1+A)" = x™ea)n

follows by induction from
(el + AJJRHT = (el + B )01+ ADK = x(14+ D) &1+ A )k

= x {X(k)v"x(k)A +kix + ”(k-ﬂ +kix + 7)(k-”A } (1+A)k
= x{x® ko )T F 14 AP < o )V k)1 AJEHT < BT g

Hence
n
(3.10) x(1+A))™ = S 1) Ksinai® 1 a)k = AT [+ )7,
k=1

where x¥ Ex(k).

Relation (3.8) admits the inverse

n
(3.11) 1+ A)" = 3 (=1 S klixtt + 5))*) = B xp1 + 8)),
k=1

where (x(1 + A ))K = (x(1+ A )/ .

Using (3.9), (3.11) may be rewritten

n
(3.12) )8 = 5 1Kkt + )
k=1
Using (1.1)
n
(3.13) (x(1+A))y = 3 sinkx(i+A)K = Aplx(i + 4 )
k=1
and using (3.9)
n
(3.14) 1+ D))y =3 stokix® i+ Ak = Aplxti + )],
k=1

where the inverses of (3.13 and (3.14 are, respectively,

n
(3.15) (x(1+A))" = 3 Slnklix(l + A = Bplx(l+A))
k=1
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and
n
(3.16) XM+ A)" =D Sinkdixll + Al = Balx(l+A)).

k=1
Iterating (/ + A)x =x+xA + A +/=(x+7)(I + A) n times we have

(3.17) (1+A)"% = (x+n)(l +A)" .
More generally,

(3.18) (1+A)"x™ = (x+0) 1+ A)"
as the following induction step shows:
1+ A)" M g AP+ A ™ = 1+ AP+ 1) x40+ 1)1+ A)

=x+1+0)™ 01+ A (x+n+ 1)1+ A).
Using (3.17) we get
x+1+n) ™ (xtn+1+0)1+ AP (1+A) = (x+n+ 1))
Replacing x by x + 7 in (3.9) and using (3.17) for n = 7 we have
(3.19) (1+A )" = (x+ 1) +A)" = (1+A)"(x), .
Similarly (3.10) becomes

(3.20) ((+A)™ =A™ s )+ a) = A™ [+ A7,

where (x + 1)K = (x + 7)(k).
Equation (3.11) becomes

(3.21) (+8x)" = B™ e+ 1)1 +A)) = B™ 11+ A)x] .
Equation (3.14) becomes
(3.22) ((1+A)x), = A [(1 + A)x] .

4. THE OPERATORS x02x Dx20, xA%x — 1, Afx — 1)@ A

We first note that x0 and Ox commute, i.e.,
(4.1) xD*x = xDDx = x*D* +2xD = DxxD = Dx*D
and we restrict our attention to x02x.

Since x02x =xD Dx=xD(1+xD)=B8,[xD](1+8,[xD]),

(xDx)" = {31[x01(7+3, [xu/)}".

By (2.14) this gives
(4.2) (xD2x)" = B, [xD](1+B, [xD])"
or alternatively

n

@.3) 602" = 37 () BowicleD] .
k=0

This becomes

[FEB.
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n ntk o
(4.4) 60" = 3 (7)) 3 Stn+k ineln!
=0 j=0
or utilizing (2.2),
n
(4.5 (0" = 37 () em)™

k=0
Since x0 and Dx commute with each other,
(xD?*x)" = (xDDx)" = (xD)"(Dx)" = [(xD)(Dx)]" .
Using (2.2) and (2.12) this gives
4.6) (xD*x)" = B, [xD]B™ [Dx]
Comparison with (4.2) yields

n

(4.7) B™x) = Y (Z) Bi[xD] .
k=0
Since by (2.1) and (2.8),
x"D2x" = x"DPD X" = (xD),(Dx)™
and since

(xD — k)(Dx +k) = (xD — k)(xD +1+k) = xD?x — k@

we have, analogous to (2.1) and (2.8),

]

(4.8) x"D%"x" = i xD?x - k@),
k=0
Remark. D"x?p" = x"p2"x" .
We note that xAand A (x — 7) commute, i.e.,
(4.9) XA2(x—1) = xA(1+xA) = (1+xA)x = (x=1)?A.
Writing

xA?(x—1) = xA(1+xA) = B, [xA](1+B,[xA])

we have using (2.14)

@.10) (xA2(x = 1))" = BylxAJ(1+B[xA])"
or
n n n+k
@.11) (xAz(x—1))" = Z (Z) BhiklxA] = Z (Z) Z Stn +k, jxipi
k=0 k=0 j=0

or using (2.4)

n

@.12) KA - 1) = 3 (;) (XA )"
k=0

Since by (2.3) and (2.10)
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xMATA e~ 1)y = A (Alx— 1)) = (xA),(xA + 1)

and since
(XA — k)(xA +1+k) = (xA2(x - 1) - k?))

we have, analogous to (4.8),

n
(4.13) xMpa2n _q) = kna xA2(x—1)- k@),

5. THE OPERATORS x(/ + D)2x, x(I + A)* (x — 1)
The operators x(/ + D) and (/ + D)x commute, i.e.,
(5.1) x(1 +D)*x = (I +D)x*(l + D),
and we have using (3.2)

n n

(5.2) (el +DPx)" = 3 ( Z) Basclxl1+0)] = 3 ( n ) (x(1 + D))"
k= k=0
and
n n+k
(5.3) bl +0rx)" =55 (7)) X Sto+kiwti+ o)
n=0 j=0
The operatorsx(/ + A) and (/ + A )(x — 1) commute, i.e.,
(5.4) xl1+ 82— 1) = (1+ A)ix— 1)1+ 5).
Using (3.18),
(5.5) x(1+A)x—1) = x(I+A)x(l+A) = (x(I +A)),
Hence by (3.9)
(5.6) x(+ AP 0= 1) = (x(1+A))%" = x40 7 )20
Since
XM A) 1+ A) 0= 1)y = x™ (1480714 D) x - n)
=x™1 a1+ 80" = xMixra) ™ 8) 148"
we have
(5.7) x™ (148020 = 1), = x@V(14+A)20
and comparing with (5.6)
(6:8) bl + 8020 — )7 = X1+ A )2 0x— 1),
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