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1. IWTRODUCTIOW 

In this paper we are concerned with the primitive periodicity of Fibonacci-type sequences; where the Fibonacci 

sequence | Fnl^=o is defined with FQ = 0, F-j = 1, and Fn+2= Fn+<j + Fn; and the generalized Fibonacci se-

quence lHn \%=o has any two relatively prime starting values with the rule, Hn+2 = Hn+f +'Hn. The Lucas 

sequence | Ln\ ^=Q is defined with LQ = 2, Lj = 1, and Ln+2 = Ln+j + Ln; and the generalized Lucas sequence 

\Gn l^=o is defined recursively by Gn = Hn+-j + Hn-j. We will see that in one case, that of modulo 3n, all gen-

eralized Fibonacci sequences have the same primitive periodicity. Then we will observe that the primitive 

periods of j F n \ and <Lnl are the same, moduluspm, where/? is a prime,/? £5. 

Prior to examination of the Fibonacci case mod 3n we will prove the following theorem: 

Theorem. \in\Fm,\\\ en n \Fmnk — 1. We use the fact that 
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By induction, nk 1\F k.2- Clearly, nk 1 also divides all successive terms as/is increasing. Our proof is 
complete. 

2. THE FIBONACCI CASE MOD 3" 
Theorem 1. The period (not necessarily primitive) of the Fibonacci sequence modulo 3n is 2 -3n~ . 

We will prove that: (A) F23.3n-1 = F0 (mod 3n) and (B) F23t3n.1+1 = F1 (mods'7). 

A. The proof is direct. 
3\F 2> thu$3k\F22.3k~i, using the theorem; \im\Fn, then mk\Fnrr)k-i. 

It follows tha t3 k \F 2 3 , 3 k _ 1 f thus F23o3k_f = 0 (mod 3*). 

Hence Part A is proved. 
B. (1) First, F23t3n_J+1 = (F22.3n-1+1>

2 + (F22.3n-1> 
using the identity 

Fm+n+1 = Fm+fFn+i + FmFn . 

Now, since (F22.3n-i)
2 =0 (mod 3n) From Part A, it follows that 

(2) (F23.3n-l)2™1 (mod S'7) from the identity ^ ^ / ^ . / - f ^ r - z r . 
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(3) Now, substituting into (1) we have F
23.3n-1+i - ^ + ^ ' m °d 3"). Hence Part B is proved. 

Theorem 2. The primitive period of the Fibonacci sequence modulo 3 " is 22-Zn~1. Secondly, 22-3n'1 

is the entry point of S77. Let 3 be the highest power of 3 dividing Fn ; the notation is 3 \Fn. 
(4) We now prove that 3n lF22,3n-i. The proof is by induction. We will have to consider three cases, 

CASE 1. n = 7. 31 \F22.3 7-7 ; 3\\F4 = 3 and, 31+1XF
23.3 1_1 91F8 = 21. 

CASE 2. n = 2 32\\F22.32-I; 9\\F12 = 144 and, 32+1j[F'23.32-i 271F24 = 46368. 

CASE 3. n >2. Assume 3k I IF
22.3k-1>' t h e n w e c l a i m 3k+1 )(F23m3k_1. 

F
23.3n-1 = (F

22.3n-l)(L
22.3n-1> 

using the identity F2n = FnLn. Now, given that 3n ^F22 _1 and since (Fn, Ln) is 1 or 2, then 

3 XF23.3n~1' 
(5) If 3k+1tF22t3k then 3k+1 divides a smaller Fm whose subscript is a multiple of the first Fm that is 

divisible by 3k. It must be of the form, p(2 -3 ~1). Clearly, p $ 1, for that contradicts our assumption that 
3k^F

22.3k-v And/7 £2, for 3k+1J[F23u3k^f. We conclude that p = 3, hence the first Fm divisible by 3k+1 

[%F22.3k- Furthermore, 
F22.3k = F

22.3k-l(5(F
22.3k-l) +3) 

implies 3 + \\F22m3k as it clearly shows 3k+2KF22t3k. Our claim in (4) is true; our proof is complete by 
induction. 

(6) Now that we have found the first Fm divisible by J , we can write the primitive period modulo 3 as a 
multiple of that subscript. The primitive period is of the form s(22-3 ). We have shown that when s = 2 we 
have a period, not necessarily primitive. We must examine s < 2, that is, s = 1. If the primitive period were to 
be 1(22'3k~1), then we would need 

F
22.3k-1 = F0 and F22.3k-1+1 = F1 (mod 3 * ) . 

We claim that the latter is false. 
(7) We assert that F

22,3k-1 £ F7 (mod 3*), but that 
F

22.3k-1+1 =(~F1) (mod 3k). 
This follows by induction. 

(8) Case 1. k= 1. F
22.31-1+1

 = F5 = 2 = -1 <mod 3) . 

Case 2. k = 2. F
22.32-1+1 = F13 = 233 = -1 (mod 3 2 ) . 

Case3./r>2 Assume that F
22.3k-l+i = -1 (mod 3^). 

(9) Recall from Theorem 1, that F
22.3k-1+1 - 1 ( m o d 3k) and that F

22.3k-1 = 0 (mod 3k). 
(10) Observe that 

F22>3k+1 = (F22'3k-1+1)(F23-3k-ni> + (F22-3l<-1>(F23-3l<-'i>' 
using the identity Fm+n+1 = Fm+1Fn+1 + FmFn . 

(11) Now substituting (9) into (10) and using our inductive assumption in (8) we have 
F

22.3k+1
 s (-D(1) + (0)(0) (mo63k+1). 

That is, F22.3k+i = (~Fi) (mod 3***) and our proof is complete. 
(12) We conclude thats < 2, thuss = 2 provides the primitive period and Theorem 2 is proved. 

3. THE GENERAL FIBONACCI CASE MOD 3n 

Theorem 3A. The period (not necessarily primitive) of any generalized Fibonacci sequence modulo 3" is 
23.3n~1. We will prove that: (A) H23,3n_1+1 = H-, (mod 3") and (B) H23.3n+l+2 = #2 (mods'7). 

A. We will have to consider three cases. 
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Case 1. n= I H
23^1-1+1 = H9 = 21H2+ 13H7 = H1 (mod 3 " ) . 

Case 2. n = 2. H23.32-l+1 = H25 = 46368H2 +28657H1 = H7 (mod 3 2 ) . 
Case 3. n > 2. 

(!3) First, H
23.3n-1+1

 = H1F
23-3n-1-l + H2F23.3n-1 

from the identity Hn+1 = H jFn-j + H2Fn • 
(14) But since 

F23.3n-1 = 0 (mods'7), and f ^ . ^ - / , , - F
23.3n-1+1 ~ F

23.3n-1 =1-0=1 

from the recursion rule that fm_y = Fm+1 - Fm ; we substitute (14) into (13) to obtain that 

(15) H
23.3n-1+1

 s H1(1) + H2(9) (mod 2n) 

and Part A is proved. 
B- F i r s t ' H

23.3n-1+2
= H

1
F

23.3n-1 + H
2

F
23.3n-1 + tj 

from the identity Hn+2 = H'lFn + H2Fn+p 

Since F'3 3n_-j = 0 (mod 3") from 1-A, and 
F

23.3n-1+1 - 1 (mod 3") 
from 1-B, Part B follows immediately. 

Theorem 3B. The primitive period of any generalized Fibonacci sequence modulo 3n is 2 • 3 . 

In Theorem 3A we proved that the period is at most-? • 3n~1. It remains to show that the primitive period 
is no smaller. 

Consider the generalized Fibonacci sequence \Hn\f(H1fH2)= I Adding alternate terms we derive another 

generalized sequence | Dn\. We observe: H2 + HQ= kD/ where k is an integer, H3 + H-j = kQ2, and so on. 
We need to examine the possible values for k. We rewrite the equations above: 

2H2-H1 = kD1 H2 + 2H1 = kD2 . 
We solve fo r / / / and H2 : 

H2 = k-(2D1 + D2) = ^(D3 + Dj) H1 = k-(2D2-DT) = \(Q2 + D0). 

If k = 5, then | Hn\ is a generalized Lucas sequence. If 5//r, then k = 1 because (H-j, H2)= 1, and 5 must di-

vide (D3 + D -j) and (D2 + DQ). Thus k = 1 implies that j Dn \ is a generalized Lucas sequence. 

We conclude that modulo 5" is the only prime modulus in which the primitive period of a generalized Fib-
onacci sequence will be smaller than in the Fibonacci case. We note that it will be smaller by a factor of five. 
Hence, our proof of Theorem 3B is complete. 

Example. The period modulo 5^ of the Fibonacci sequence is 4-5/? while the period mod 5" of the Lucas se-
quence is 4-5" " . 

4. THE FIBONACCI AND LUCAS CASES IV!OD/?m 

Lemma 1. A prime p, does not divide \Ln\ if and only if the entry point of p in \Fn\, (FPp), is odd. 
We will examine two cases in the proof. 

Case 1: Given pi y-n\ • 

(16) Assume FPp is even, that is, FPp = F2k, we write p \\F2k • 
(17) p\\F2i< implies pKFk. 

Recall the identity F2i< = F^L^. Therefore,pMk- This contradicts that/7/ j Ln\ . 
(18) Hence our assumption in (16) is not true, so FPp is odd. We conclude that/7/j Lnl implies EPp\$ odd. 
Case 2: Given FPp is odd. 

(19) Assume/?| { Ln\ . Then there exists k such thatp I ILk. 

(20) Recall that the greatest common divisor of (Fn, Ln)\$1 or 2. Hence p/F^ . 
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(21) p\\Lk implies/7IIF2A- from the identity F2k = FkLk. This contradicts that EPf is odd. 
(22) Therefore pK j L n \ . We conclude that EPf is odd implies that pH Ln I and our proof iof Lemma 1 is 

complete. 

Lemma 2. A prime p divides | LrX if and only if EPp is either of the form 2 (odd) or 2m (odd), m > 2. 
This follows immediately from Lemma 1 and the identity E2n. = F2n-1k • L2n_f. . 

Theorem 4. The primitive periods of \Fn\ and \Ln\ are of the same length, modulus p, for/7 a prime, 
P 15. x 

Case 1. The primitive period for | Ln \ is no longer than for < Fn\. 

(23) We have Ln+k - Ln-k = LnLk, k odd. 

(24) Ln+k - Ln.k = 5FnFkf k even. 

Now, let 2k denote the length of the period of \ Fn J. Thus k denotes half the period of \ Fn\. When 

EPp of/? is odd then the period, 2k, \s4(EPp). Thus k = 2(EPp) so k is even. Likewise, when EPp of # 
is of the form 2m (odd) form > 2, then the period, 2k, h2(EPF). Thus k = EPF = 2m (odd) so A-is 
even. 

Note, above that either k = 2EPp or k = EPp, thus Fk = 0, mod p. Hence, Ln+k - Ln-k = 0, mod 

p. It follows that the period of < Ln \ is 2k which is the period of | Fn I. 

Now we consider the special case when EPp is of the form 2 (odd). Then the period, 2k, is EPp, and 

k = Vil (odd) so k is odd. We will use Eq. (23). We recall that F2kFkLk impliesp\Lk since EPp ofp is 
F2k impliesplFk. Heneeyc?l£j<. means tk =• 0, mod p. Therefore Ln+k - Ln~k = 0, mod p. It follows 

i that the period of j Ln | is 2k, again the same as the period of < Fn \. 

Case 2. The primitive period for \Ln\ is no shorter than for \Fn\. 

A. First we will consider the situation in which EPp is odd. Then the period \s4(EPp) and k = 2(EPp). By 

Lemma ],p/\Ln^. 

(25) Assume the primitive period for I Ln^ isshorterthan for iFn >, that is, the primitive period for \Ln\ 

is half the period of \Fn>. Then the period for <Lnl \$2(EPp). We use Eq. (23) since 

(26) EPp is odd. We have Ln+ppF - Ln-EPp = Ln LppF. But pj(\ Ln > thus ptipPp so Eq. (26) is not con-
(27) gruent to zero. Therefore, the period cannot be2(EPp). Ourassumption in (25) is false, so when EPp 

is odd the period of < Ln \ is no shorter than for \Fn\. 

B. Now we consider the situation in which EPp Is of the form 2d, where d is odd. Then the period for 

{F„\\*EPF. 

(28) Assume the primitive period for | LA isshorterthan for JF^^ . We note that L^ = 0 since EPp is F2d 

and the fact that F2d = Ed^-d- Now, assuming the primitive period for | Ln> is smaller means that 
there exists c where c < d such that Ln+C- Ln-C = LnLc. This would meet the requirement since the 
period 2c < 2d. However, Lc = 0 implies that F2C = 0 mod/7 which contradicts that EPp ofp is F2d-

(29) Our assumption in (28) is false, so when EPp is of the form 2d where d is odd, then the period for 

| Ln \ is no shorter than for \Fn\ . 

C. Lastly, we consider the situation in which EPp is of the form 2md, where d is odd and m > 2. Then the 

(30) period for Fn, is 2EPp. Assuming the primitive period for \Ln | is smaller, then it too must be even 

since the period for \Fn\ is even. There exists b where b < EPp such that Ln+b ~ Ln-b
 = 5FnFij. 
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But \\2b is to be the period for \ln J then 5FnFb = 0 mod/?. But Fb^ 0 mod/? since/? <EPF.Our 

(31) assumption in (30) must be false. We conclude that if EPp is of the form 2md, where d is odd, m > 2, 

then the primitive period for \ i n \ is no shorter than for I Fn \. 

Our conclusions in (27), (29), and (31) prove that Case 2 is true. Thus our proof of Theorem 4 is complete. 
Examples of Theorem 4 

Example 1. EPp of p is odd. 

Take/7 = 13. The EP F= 7. We see the length of the primitive period of \Fn\ is 28. 

Period of | Fn } mod 13= 1, 1 ,2 ,3 ,5 ,8 ,0 ,8 ,8 ,3 , 11, 1, 12,0, 12, 12, 11, 10,8,5,0,5,5, 10,2, 12, 1,0. 

Period of j Ln | mod 13= 1,3,4,7, 11,5,3,8, 11,6,4, 10, 1, 11, 12, 10,9,6,2,8, 10,5,2,7 ,9 ,3 , 12,2. 

We see that the primitive period of \Fn\ is exactly the same length as the primitive period of j Ln \ . 

We also observe that Lemma 1 is demonstrated as/?/1 Ln \ . 

Example 2. EPp of/? is of the form 2 (odd). 
Take/?=2& JheEPF = 14 = 2(7). The length of the primitive period of \Fn] is 14. 

Period of { />,} mod 29 = 1, 1,2,3,5,8, 13,21,5,26,2,28, 1,0. 

Period of ]Ln\ mod 29 = 1,3,4,7, 11, 18,0, 18, 18,7,25,3,28,2. 

We see that the primitive period of \Fnl is exactly the same length as of H/7(-

Also note that the EPp = 2EP[_. We see Lemma 2 demonstrated. 

Example 3. EPp of /? is of the form 2m (odd), m > 2. 

Take/? = 47. The EPp = 16 = 24(1). The length of the primitive period of ifn^ is 32. 

Period of \Fn\ mod47 = 1, 1,2,3,5,8, 13,21,34,8,42,3,45, 1,46,0,46,46,45,44,42,39,34,26, 13, 
39,5,44,2,46,1,0. 

Period of \Ln\ mod 47= 1,3,4,7, 11, 18,29,0,29,29,11,40,36,29, 18,0, 18, 18,36,7,43,3,46,2. 

Again we see that the primitive period of j Fn | is exactly the same as for | Ln \ . 

We notice that the EPp = 2EP[_, and we see Lemma 2 demonstrated. 
Comment. In this study we came across an unanswered problem that was discovered by D. D. Wall in 1960. It 

concerns the hypothesis that "Period mod/?2 ^ Period mod/?." He ran a test on a digital computer that verified 
the hypothesis was true for all /? less than 10,000. Until this day no one as yet has proven that the Period mod 
p2 = Period mod/? is impossible. 

We give an example to show that the above hypothesis does not hold for composite numbers. Period mod 122 

= Period mod 12=24. 
Period mod 12 of \Fn\ = 1, 1,2,3,5,8, 1,9, 10,7, 5,0,5,5, 10,3, 1,4,5,9,2, 11, 1,0. 

Period mod 122 of { Fn \ = 1, 1, 2, 3, 5, 8, 13, 21, 55, 89, 0, 89, 89, 34, 123, 13, 136, 5, 141, 2, 143, 1, 0. 

We note that EPF of 12 = EPF of 1 2 \ 
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