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1. INTRODUCTION
In this paper we are concerned with the primitive periodicity of Fibonacci-type sequences; where the Fibonacci
sequence {F,,},T:g is defined with Fp =0, F; =1, and Fpr2= Fh+7* Fp; and thegeneralized Fibonacci se-
quence {H,,};’:o has any two relatively prime starting values with the rule, A2 = Hp+9 # Hp,. The Lucas
sequence {L,,;» n=p is defined with Lg=2, L ;=1 and L,+2=Lp+7 * L,y ; and the generalized Lucas sequence
{Gn %;:0 isdefined recursively by G, = Hp+7 + Hp— 7. We will see that in one case, that of modulo 37, all gen-
eralized Fibonacci sequences have the same primitive periodicity. Then we will observe that the primitive
periods of an§ and {Ln} are the same, modulus p'”, where p is a prime, p # 5.
Prior to examination of the Fibonacci case mod 3”7 we will prove the following theorem:
Theorem. 1£n\Fp,, then nK{F,,k — 1. We use the fact that
A" = Fpa+ Freg B™ = FpB+Fm-g (amnk=2)" = gmnk-1
amnk? = aF o+ F ko, B = BF 4o+ Frnk=2_,

By definition,
n

_ n J n-fr.
ank‘7 - Z (/) (ank'z} (ank‘2—7) Fj
=0

- -1 ' 2
ank“7 - 0+nank‘2(ank‘2—7)n Fi+ (g) (ank—Z) an/<“2--7":'2 .
By induction, nk'7|ank_2. Clearly, n*=7 also divides all successive terms as / is increasing. Our proof is
complete.
2. THE FIBONACCI CASE MOD 3"

Theovem 1. The period (not necessarily primitive) of the Fibienacci sequence modulo 37 is 23
We will prove that: (A) F 3 o, ;= F, (mod 37) and (B) F,3.50-7,,=F1 (mod 3").

A. The proof is direct.
31F 2. thus Sk‘F22_3k_7, using the theorem; If m|F, then mkIank_7 .

_3n-1_

It follows that3k|F23_3k_,, thus F,3, 57 =0 (mod 3k),

Hence Part Ais proved.
B. (1) First, Fo3.3n-147 = (F22_3,,_7+7)2+(1F22‘3n_,)2
using the identity ‘
Fmtnt1 = Fmt1Fne1t FmFn.
Now, since (F22_3,7_7)2 =0 (mod 3”) From Part A, it follows that
(2) (Fp3.5n-1)% =1 (mod 37) from the identity Fps7Fp-g — F2 = (—1)".
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(3) Now, substituting into (1) we have £,3 5p-7,,=1+0 (mod 3"). Hence Part B is proved.

Theorem 2. The primitive period of the Fibonacci sequence modulo3” is 2°.37"7. Secondly, 22377
is the entry point of 37, Let 3% be the highest power of 3 dividing F, ; the notation is 3k Fn.

{4) We now prove that 3 I F22u3,,_f. The proof is by induction. We will have to consider three cases,

CASE 1. n=1. 3MF,2. 01, 3VFg =3 and, 3T TYF,5 41y 91Fg = 21

CASE2.n=2 32VF,5 4oy, 9VFi2 = 144 and, 37*7[F,3 o5 1 27HF2q4 = 46368.

CASE 3.1 > 2 Assume 3%IF, 5 o7 then we claim 3¥7TYF 5 op ;.

Fr3.3n-1 = (F22.3n—7}(/-22.3n—7)
using the identity Fo, = F,, L,,. Now, given that 3" | F22‘3n_, and since (F,, L,/ is 1 or 2, then

3n+ 7XF23.3n—7 )

(5) If 3k+7)fF22_3k then 3X*7 divides a smaller Fm whose subscript is a muitiple of the first Fp, thatis
divisible by 3% 1t must be of the form, p(22-3k'7}. Clearly, p # 1, for that contradicts our assumption that
3k“F22.3k_7. And p # 2, for 3k T/{F‘?g.gk._r We conclude that p = 3, hence the first Fp, divisible by 3kt
is F 2.5k Furthermore,

Fr2.3k = F22.3k—7(5(F22.3k-7)2+3)
implies 3k+7“F22_3k as it clearly shows 3k+21F22‘3k. Our claim in (4) is true; our proof is complete by
induction.

(6) Now that we have found the first F,, divisible by 3k, we can write the primitive period modulo 3% asa
multiple of that subscript. The primitive period is of the form 5(22-3/(" 7). We have shown that when s = 2 we

have a period, not necessarily primitive. We must examine s < 2, thatis, s = 7. |f the primitive period were to
be 7(22.3%1), then we would need )

F22.3k—7 = F,g and F22.3k—7+7 = F7 (mod 37).
We claim that the [atter is false.

(7) We assert that Fo2.5k-1 # F7 (mod 3%), but that
k
) F2.2.3k—7+7 = (—F7) (mod 37).

This follows by induction.

(8) Case 1. k=1 Fo2.31-147 = F5 = 2 = ~1 (mod 3).
Case 2. k=2, Fo2.32-147 = F13 = 233 = —1 (mod 32).
Case 3.k >2 Assume that £,5 54-7,, = —1 (mod 35).

(9) Recall from Theorem 1, that F,5 54-7,, = 7 {mod 3%) and that Fy2.3k-1 = 0(mod 3%).
(10) Observe that

Fozogker = (Foz.3k-141/F 53.5k-141) # (F 2. 56-1)F 33, 3k-1),
using the identity Fryintt1 = Fme1Fne1+ FmFn-
(11) Nowsubstituting () into (10) and using our inductive assumption in (8) we have
Foz.3ksy = (—1)(1)#(0)(0) (mod 35*7).

Thatis, F,2, 5,4 = (—F7) (mod 3k*1) and our proof is complete.
(12) We conclude thats < 2, thus s = 2 provides the primitive period and Thearem 2 is proved.

3. THE GENERAL FIBONACCI CASE MOD 3"

Theorem 3A. The period (not necessarily primitive) of any generalized Fibonacci sequence modulo 37 is
23.3"1 We will prove that: (A) Hy3.3n-147 = H7 (mod37) and (B)H,2 5p47,, = H2 (mod 37).
A. We will have to consider three cases.
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Case 1. n=1. H,y3.91-147 = Hg = 21H2+ 13H; = Hy (mod 3").
Case2 n=2  Ho3.501,, = Hog = 46368H+28657H1 = Hy (mod 32).
Case 3. n>2.

(13) First, Hy3.3n-147 = H7F23.3n—7_7 *H2F53.5n-1
from the identity Hntg = HiFpoqy +HoF,.

(14) Butsince

F23.3n—7 = 0 (mod 3”), and F23.3n—7_7 = F23.3n—1+1—F23.3n—7 =1-0-=1

from the recursion rule that Fp,—7 = Fy7 — Fpy ; we substitute (14) into (13) to obtain that

(15) Hy3.50-147 = H1(1)+ H2(9) (mod 37)
and Part A is proved.

B. First, H

23.3n-1+2 = H7F23.3n—1 +H2F23.3n—1+7
from the identity Hpes = HiFn+ Hofpeq.
Since F,3.57-7 = 0 (mod 3”) from 1-A, and i
F23‘3n_7+7 =7 (m0d3 )
from 1-B, Part B follows immediately.

Theorem 3B. The primitive period of any generalized Fibonacci sequence modulo 3”7 is 2% . 3777
In Theorem 3A we proved that the period is at most 23 .31, It remains to show that the primitive period

is no smaller.
Consider the generalized Fibonacci sequence {H,,%, (H;,Ho) =1 Adding alternate terms we derive another

generalized sequence % D,,}. We observe: Ho + Hg= kD 7 where k is an integer, H3 + H7 = kD5, and so on.
We need to examine the possible values for k<. We rewrite the equations above:
2Ho—Hy = kD4 Ho+2Hqy = kDjy .
We solve for H7 and Ho -

Hy = g_(zn,wz) = g (D3+D;) Hy = g(znz—a,/ = gmzwo).

If k = 5, then {Hn} is a generalized Lucas sequence. |f 5k then k = 7 because (H 7, H2)= 1, and 5 must di-
vide (D3 + D) and (D5 + Dg). Thus k = 7 implies that { D, } is a generalized Lucas sequence.

We conclude that modulo 5” is the only prime modulus in which the primitive period of a generalized Fib-
onacci sequence will be smaller than in the Fibonacci case. We note that it will be smaller by a factor of five.
Hence, our proof of Theorem 3B'is complete.

Example. The period modulo 5” of the Fibonacci sequence is 4-5” while the period mod 5” of the Lucas se-
quence is 4-5"".

4. THE FIBONACC! AND LUCAS CASES MOD p™

Lemma 1. A prime p, does not divide {Ln} if and only if the entry point of g in gF,,}, (EP£), is odd.
We will examine two cases in the proof.

Case 1: Given pf {L,,}
(16) Assume EPg is even, thatis, EPF = Fop, we write p I Fo .
(17) plFor implies pfF.
Recall the identity Fog = Fi Lk. Therefore, p|Lg. This contradicts that pt L,

(18) Hence our assumption in (16) is not true, so £Pg is odd. We conclude thatpk’% Ln} implies £P"is odd.
Case 2: Given £Pfg is odd. :

(19) Assume p| {L,,} . Then there exists & such that p Ly .
(20) Recall that the greatest common divisor of (F,,, L,,)is 1 or 2. Hence p/Fy .
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(21) plLy implies p I Foi from the identity Fog = Fx Lg. This contradicts that £Pg is odd.

(22) Therefore pX{Ln}. We conclude that £Pg is odd implies that p,Y{ L,,} and our proofiof Lemma 1is
complete.

" Lemma 2. A prime p divides {L,} if and only if EP£ iseither of the form 2 (odd) or 2 (add), m > 2.

This follows immediately from Lemma 1 and the identity F2,7k = F2,,,1k . L2H-7k'

Theorem 4. The primitive periods of {F,,} and {L,,} are of the same length, modulus p, for p a prime,
p#b. : )
Case 1. The primitive period for { L,,} is no longer than for {F,,} .

(23) We have L4 — Lp-k = LpLg, k odd.
(24) Ltk — Lp-k = 5F, Fp, k even.
Now, let 2k denote the length of the period of {F,, } Thus k denotes half the period of { F,,}_ When

EP£ of p is odd then the period, 2k, is 4(EPg). Thus k = 2(EP£) so k is even. Likewise, when EPg of 5
is of the form 2 (odd) for m > 2, then the period, 2k, is 2(EPg). Thus k= EPg=2"" (odd) so kis
even.

Note, above that either k = ZEPg or k = EP g, thus Fy =0, mod p. Hence, L 44 — Lp-x =0, mod

p. It follows that the period of { £, | is 2 which is the period of { .
Now we consider the special case when £Pg is of the form 2 (odd). Then the period, 2%, is EPf, and

k = %2 (odd) so k is odd. We will use Eq. (23). We recall that Foy Fx L implies p|Ly since EPg of p is
F o implies pfFy. Hence p Ly means Ly = 0, mod p. Therefore L4 — Lp—g =0, mod p. It follows

ithat the period of %Ln} is 2k, again the same as the period of { F,,}.
Case 2. The primitive period for {L,,} is no shorter than for {F,, }
‘A. First we will consider the situation in which £P£ is odd. Then the period is 4(EPg) and k = 2(EPF). By
Lemma 1,p,¥{L,,}. ’
(25) Assume the primitive period for ‘ L,,:» is sharter than for {Fn } , that is, the primitive period for {L,,}
is half the period of {F,,}. Then the period for {L,,} is 2(EPE ). We use Eq. (23) since
(26) EPfis odd. We have L +epp — Lp-£pp = LnLEPE- But p,{’{ L,,} thus pfLgpp so Eq. (26) is not con-
(27) gruent to zero. Therefore, the period cannot be 2(EP£). Our.assumption in (25) is false, so when EPg
is odd the period of { Ln} is no shorter than for {Fn}.
B. Now we consider the situation in which £Pg is of the form 2d, where d is odd. Then the period for
{Fn} is EPE.
(28) Assume the primitive period for { L,-,} is shorter than for g Fn } We note that Ly =0 since EPEg is Foy
andvthe fact that Foyg = FyLy. Now, assuming the primitive period for {L,,} is smaller means that

there exists ¢ where ¢ < d such that L+ — Ly—¢ = L Le. This would meet the requirement since the
period 2c < 2d. However, L. = 0 implies that F5, =0 mod p which contradicts that EP £ of p is F24.

(29) Our assumption in (28) is false, so when EPf is of the form 2d where d is odd, then the period for
{ L, } is no shorter than for {Fn}.

C. Lastly, we consider the situation in which £Pg is of the form 2”d, where d is odd and m > 2. Then the

(30) period for £, is 2EPf. Assuming the primitive period for %L,, } is smaller, then it too must be even
since the period for {F,,} is even. There exists b where b < EPgsuch that L,+p — Lpy-p = 5F, Fp.
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But if 2b is to be the period for {L,, } then 5F, Fp, = 0 mod p. But Fi# 0 mod p since b < EPg. Our
(31) assumption in (30) must be false. We conclude that if £Pg is of the form 2°d, where d is odd, m > 2,
then the primitive period for %Ln} is no shorter than for g F,,}.
Our conclusions in (27), (29), and (31) prove that Case 2 is true. Thus our proof of Thearem 4 is complete.

Examples of Theorem 4
Example 1. £Pf£ of p is odd.

Takep = 13. The £P g= 7. We see the length of the primitive period of {F,, } is 28.

Period of {Fn} mod 13=1,1,2,3,5,8,0,8,8,3,11,1,12,0, 12, 12; 11,10, 8,5,0,5,5,10,2,12,1,0.
Period of {L,,} mod 13=1,3,4,7,11,5,3,8,11,6,4,10, 1, 11, 12, 10, 9,>6, 2,8,10,5,2,7,9,3,12, 2
We see that the primitive period of { F,,} is exactly the same length as the primitive period of { L,,} .

We also observe that Lemma 1 is demonstrated as pf i Ln} .

Example 2. £Pf of p is of the form 2 (odd).
Take p = 29. The EPr = 14 = 2(7). The Iength of the primitive period of {F,,} is 14.

“Period of {F-,,} mod 29=1,1,2,3,5,8,13, 21,5, 26, 2, 28, 1, 0. ‘

Period of ’{Ln} mod 29=1,3,4,7,11,18,0, 18, 18,7, 25, 3, 28, 2.

We see that the primitive period of %Fn } is exactly the same length as of {Ln} .

Also note that the £Pg = 2EP; . We see Lemma 2 demonstrated.

Example 3. £Pf of p is of the form 27 (odd), m > 2.

Take p = 47. The EPg = 16 = 24(1). The length of the primitive period of {F,,} is 32.

Period of ‘Fn} mod47=1,1,2,3,5,8,13,21,34,8,42,3,45, 1,46, 0, 46, 46, 45, 44,42, 39, 34, 26, 13,
39,544,246, 1, 0.
Period of %L,,} mod 47=1,3,4,7,11,18,29,0, 29, 29, 11,40, 36, 29, 18, 0, 18, 18, 36, 7, 43, 3, 46, 2.

Again we see that the Vprimitive period of {Fn } is exactly the same as for ;L,, } .

We notice that the £Pg = 2EP;, and we see Lemma 2 demonstrated.

Comment. In this study we came across an unanswered problem that was discovered by D. D. Wall in 1960. It
concerns the hypothesis that “Period mod p? # Period mod p.”” He ran a test on a digital computer that verified
the hypothesis was true for all p less than 10,000. Until this day no one as yet has proven that the Period mod
p* = Period mod p isimpossible.

We give an example to show that the above hypaothesis does not hold for composite numbers. Period mod 12*
= Period mod 12 = 24.

Period mod 12 of {Fn} =1,1,23,528,1,9,10,7,5,0,5,5,10,3,1,4,5,9,2,11,1,0.

Period mod 12* of { Fn }‘ =1,1,23,5, 8 13, 21,55, 89,0, 89, 89, 34, 123, 13, 136, 5, 141, 2, 143, 1, 0.

We note that EPg of 12= EPg of 122,
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