DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON San Jose State University, San Jose, California 95192

1. INTRODUCTION

In Matijasevic's paper [1] on Hilbert's Tenth Problem, Lemma 17 states that F_m^2 divides F_{mr} if and only if F_m divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci numbers and explore divisibility by higher powers.

In [2], Matijasevic's Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for F_{mr} . Since that proof is the basis for our extended results, we repeat it here.

We let $a = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$. Then it is well known that the Fibonacci numbers F_n are given by

(1.1)
$$F_n = \frac{a^n - \beta^n}{a - \beta}$$

and that

(1.2)

 $a^m = aF_m + F_{m-1}, \qquad \beta^m = \beta F_m + F_{m-1}.$

Combining (1.1) and (1.2) with the binomial theorem expansion of a^{mr} and β^{mr} gives

$$F_{mr} = \frac{a^{mr} - \beta^{mr}}{a - \beta} = \sum_{k=0}^{r} {r \choose k} F_m^k F_{m-1}^{r-k} \left(\frac{a^k - \beta^k}{a - \beta} \right)$$

so that

(1.4)

(1.3)
$$F_{mr} = \sum_{k=0}^{r} {\binom{r}{k}} F_m^k F_{m-1}^{r-k} F_k .$$

Since $F_0 = 0$ and F_m^2 divides all terms for $k \ge 2$,

$$F_{mr} \equiv \binom{r}{1} F_m F_{m-1}^{r-1} F_1 \equiv r F_m F_{m-1}^{r-1} \pmod{F_m^2} .$$

Since $(F_m, F_{m-1}) = 1$, it follows easily that

$$F_m^2 | F_{mr}$$
 if and only if $F_m | r$.

2. DIVISIBILITY BY OTHER FIBONACCI POWERS

The proof of (1.4) can easily be extended to give results for divisibility by higher powers. Since F_m^3 divides all terms of (1.3) for $k \ge 3$, and since $F_1 = F_2 = 1$, proceeding in a manner similar to that of Section 1,

$$F_{mr} \equiv rF_mF_{m-1}^{r-1} + \frac{r(r-1)}{2}F_m^2F_{m-1}^{r-2} \pmod{F_m^3} \ .$$

When r is odd, (r - 1)/2 = k is an integer, and

$$F_{mr} \equiv rF_m F_{m-1}^{r-2} (F_{m-1} + kF_m) \pmod{F_m^3}$$
.

Since (F_m, F_{m-1}) = 1,

$$F_m \not| (F_{m-1} + kF_m)$$
 and $F_m \not| F_{m-1}^{r-2}$

so that $F_m^3 | F_{mr}$ if and only if $F_m^2 | r$.

If r is even,

4

$$F_{mr} \equiv \frac{r}{2} F_m F_{m-1}^{r-2} (2F_{m-1} + (r-1)F_m) \pmod{F_m^3}$$

If $(F_m, 2F_{m-1}) = 1$, then $F_m^3 | F_{mr}$ if and only if $F_m^2 | r$. Thus, we have proved

Theorem 2.1. Whenever r is odd, $F_m^3 | F_{mr} \text{ iff } F_m^2 | r$. Whenever F_m is odd, $F_m^3 | F_{mr} \text{ iff } F_m^2 | r$. Sinilarly, since $F_1 = F_2 = 1$ and $F_3 = 2$, from (1.3) we can write

$$F_{mr} \equiv rF_m F_{m-1}^{r-1} + \frac{r(r-1)}{2} F_m^2 F_{m-1}^{r-2} + \frac{r(r-1)(r-2)}{3} F_m^3 F_{m-1}^{r-3} \pmod{F_m^4}$$

since F_m^4 divides every term for $k \ge 4$. If $r = 6k \pm 1$, then (r - 1)/2 = j and (r - 1)(r - 2)/3 = i for integers j and i, so that

$$F_{mr} \equiv rF_m F_{m-1}^{r-3} (F_{m-1}^2 + jF_m F_{m-1} + iF_m^2) \pmod{F_m^4}.$$

As before, since $(F_m, F_{m-1}) = 1$, $F_m^4 | F_{mr}$ iff $F_m^3 | r$, $r = 6k \pm 1$. If r = 6k, then

$$F_{mr} = \frac{r}{6} F_m F_{m-1}^{r-1} (6F_{m-1}^2 + 3(r-1)F_m F_{m-1} + 2(r-1)(r-2)F_m^2) \pmod{\frac{r}{2}}$$

If $(F_m, 6F_{m-1}^2) = 1$, then $F_m^4 |F_{mr}$ iff $F_m^3 | \frac{r}{6}$. Note that $(F_m, 6) = 1$ if $m \neq 3q$, $m \neq 4q$. The cases $r = 6k \pm 2$ and $r = 6k \pm 3$ are similar. Thus, we have proved

Theorem 2.3. Whenever $r = 6k \pm 1$, $F_m^4 | F_{mr}$ iff $F_m^3 | r$. Whenever $m \neq 3q$, $m \neq 4q$, $F_m^4 | F_{mr}$ iff $F_m^3 | r$. Continuing in a similar fashion and considering the first terms generated in the expansion of F_{mr} , we could prove that whenever $r = 6k \pm 1$, or $m \neq 3q$, 4q,

$$F_m^5|F_{mr}$$
 iff $F_m^4|r$, and also $F_m^6|F_{mr}$ iff $F_m^5|r$,

but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state that, whenever $r = k(s - 1)! \pm 1$, $F_m^s |F_mr$ iff $F_m^{s-1}|r$, by carefully considering the common denominator of the fractions generated from the binomial coefficients.

We summarize these cases in the theorem below.

Theorem 2.4. Whenever $r = 6k \pm 1$,

$$F_m^s|F_{mr}$$
 iff $F_m^{s-1}|r$, $s = 1, 2, 3, 4, 5, 6$.

Whenever $m \neq 3q$, $m \neq 4q$,

$$F_m^s | F_{mr}$$
 iff $F_m^{s-1} | r, s = 1, 2, 3, 4, 5, 6.$

Whenever $r = k(s - 1)! \pm 1$,

$$F_m^s|F_{mr}$$
 iff $F_m^{s-1}|r$.

Next, we make use of a Lemma to prove a final theorem for the general case.

Lemma. If $s^{n-1}|r$, then $s^{nk}|\binom{r}{k}$, k = 1, ..., n.

Proof. If $n \le r$, then $k \le n \le r$. Cases k = 1 and k = r are trivial. Case s = 1 is trivial. If $s^{n-1} | r$, then $r = Ms^{n-1}$ for some integer M, and

$$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1} = \frac{Ms^{n-1}}{k} \binom{r-1}{k-1} = \frac{Ms^{k-1}s^{n-k}}{k} \binom{r-1}{k-1} .$$

 $s^{n-k} | \begin{pmatrix} r \\ k \end{pmatrix}$.

 $k \ (Ms^{k-1} (r-1) / r-1)$

then

lf

lf

 F_m^4).

[FEB.

then

$$k | Ms^q \binom{r-1}{k-1}$$
, $k \leq q \leq n$,

since $\binom{r}{k}$ is an integer. That is, $k = p^{q}N$, where p is some prime.

But $k < p^q$ for $p \ge 2$ and $q \ge k \ge 0$, a contradiction, so that k must divide

$$Ms^{k-1}\binom{r-1}{k-1}$$
, and $s^{n-k} | \binom{r}{k}$.

It is impossible for n > r. If n < r, then $s^{n-1} | r$ implies $Ms^{n-1} = r$, where $n - 1 \ge r$, and where M is an integer. But $s^{n-1} > r$ for $s \ge 2$, $n - 1 \ge r$.

Theorem. If $F_m^{s-1}|r$, then $F_m^s|F_{mr}$. Proof.

$$F_{mr} = \sum_{k=0}^{r} {\binom{r}{k}} F_m^k F_{m-1}^{r-k} F_k .$$

If $k \ge s$, then F_m^s divides each term. Since $F_0 = 0$, F_m^s divides the term k = 0. When k = 1, the term is $rF_mF_{m-1}^{r-1}$. $(F_m, F_{m-1}) = 1$, so that if $F_m^{s-1}|_r$, then F_m^s divides $rF_mF_{m-1}^{r-1}$. If F_m^{s-1} divides r, then F_m^{s-k} divides $\binom{r}{k}$ for $k = 1, \dots, s$ by the Lemma, and F_m^s divides each successive term for $k = 1, \dots, s$, since in the k^{th} term we always have a factor F_m^k while F_m^{s-k} appears as a factor of $\binom{r}{k}$.

These theorems allow us to predict the entry point of F_m^k in the Fibonacci sequence in limited circumstances. The entry point of a number *n* in the Fibonacci sequence is the subscript of the first Fibonacci number of which *n* is a divisor. When $m \neq 3j$ or 4j, the entry point of F_m^k in the Fibonacci sequence is mF_m^{k-1} for k = 1, 2, 3, 4, 5, or 6.

3. DIVISIBILITY BY LUCAS SQUARES

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analogous to (1.1), the Lucas numbers L_n obey

$$L_n = a^n + \beta^n$$

and

(3.2)
$$a^m = \frac{L_m + \sqrt{5} F_m}{2}, \qquad \beta^m = \frac{L_m - \sqrt{5} F_m}{2}.$$

Combining (3.1) and (3.2) with the binomial theorem expansion of a^{mr} and β^{mr} ,

$$\begin{split} L_{mr} &= a^{mr} + \beta^{mr} = \left(\frac{L_m + \sqrt{5}F_m}{2}\right)^r + \left(\frac{L_m - \sqrt{5}F_m}{2}\right)^r \\ &= (\frac{1}{2})^r \sum_{j=0}^r \binom{r}{j} L_m^{r-j} F_m^j (\sqrt{5})^j [1 + (-1)^j] \;. \end{split}$$

When *j* is odd, all terms are zero. We let j = 2i and simplify to write

(3.3)
$$L_{mr} \cdot 2^{r-1} = \sum_{i=0}^{[r/2]} {r \choose 2i} L_m^{r-2i} F_m^{2i} \cdot 5^i$$

All terms on the right of (3.3) are divisible by L_m^2 except the last term, i = [r/2]. If r = 2t, the last term is

$$\begin{pmatrix} 2t\\ 2t \end{pmatrix} L_m^0 F_m^{2t} 5^t = 5^t F_m^{2t}$$

Since 5 $\not\mid L_m$ for any m and $L_m \not\mid F_m$ for any m > 1, $L_m^2 \not\mid 2^{r-1}L_{mr}$, m > 1. However, if r = 2t + 1, the last term is

$$\binom{2t+1}{2t} L_m F_m^{2t} 5^t = (2t+1)5^t L_m F_m^{2t} ,$$

and $2^{2t}L_{(2t+1)m}$ is divisible by L_m^2 if and only if $L_m|(2t + 1), m > 1$. If $m \neq 3q$, then $(L_m, 2) = 1$, and $L_m^2|L_m(2t+1)|$ if and only if $L_m|(2t + 1)$. If m = 3q, then L_m is even, so that

$$L_m \not| (2t+1),$$
 and $L_m^2 \not| 2^{2t} L_{(2t+1)m},$ $m > 1$

Return to (3.3) and notice that, when r = 2t + 1, all terms except the last are divisible by L_m^3 , so that

$$L_m^3 | L_{mr} \text{ iff } L_m^2 | (2t+1), \quad m > 1.$$

We summarize these results as

Theorem 3.1. Whenever r is odd,

$$L_m^2 | L_{mr} \text{ iff } L_m | r$$
, and $L_m^3 | L_{mr} \text{ iff } L_m^2 | r$.

Whenever r is even, $L_m^2 \not\mid L_{mr}, m > 1$. If m = 3q > 1, then $L_m^2 \not\mid L_{mr}$ for any r. We can also determine criteria for divisibility of L_{mr} by F_m^2 and F_{mr} by L_m^2 . It is trivial that $F_m^2 \not\mid L_{mr}$ for $m \neq 1, 2, 3, 4$, since $F_m \not\mid L_n$ for other values of m. To determine when $L_m^2 \mid F_{mr}$, return to (3.1) and (3.2), and use (1.1) and the binomial expansion of α^{mr} and β^{mr} to write an expression for F_{mr} in terms of L_m . (Recall that $\sqrt{5} = a - \beta$.)

$$\begin{split} \sqrt{5} F_{mr} &= a^{mr} - \beta^{mr} = \left(\frac{L_m + \sqrt{5} F_m}{2}\right)^r - \left(\frac{L_m - \sqrt{5} F_m}{2}\right)^r \\ &= (\frac{1}{2})^r \sum_{j=0}^r \binom{r}{j} L_m^{r-j} F_m^j (\sqrt{5})^j [1 - (-1)^j] \;. \end{split}$$

Here, whenever *j* is even, all terms are zero. Setting j = 2i + 1 and rewriting, we obtain

(3.4)
$$\sqrt{5} F_{mr} = (\frac{1}{2})^{r} \sum_{i=0}^{\lfloor r/2 \rfloor} {\binom{r}{2i+1}} L_{m}^{r-2i-1} F_{m}^{2i+1} \cdot (\sqrt{5})^{2i+1} \cdot 2^{r} L_{m}^{r-2i-1} F_{m}^{2i+1} \cdot 5^{i} L_{m}^{r-2i-1} \cdot 5^{i} L_{m}^{2i+1} \cdot 5^{i} L_{m}^{r-2i-1} \cdot 5$$

Notice that, when r = 2t + 1, L_m^2 divides all terms of (3.4) for i < [r/2]. When i = [r/2] = t, the last term is

$$\begin{pmatrix} 2t+1\\ 2t+1 \end{pmatrix} L_m^0 F_m^{2t+1} \cdot 5^t = 5^t F_m^{2t+1},$$

which is not divisible by L_m , m > 1, since $L_m \not\mid F_m$, m > 1, and $L_m \not\mid 5^t$ for any t > 0. That is, if r is odd, $L_m^2 \not\mid F_{mr}$ for any m > 1.

However, when r is even, L_m^2 divides all terms of (3.4) for i < [r/2] - 1. If r = 2t, then the terms i = t - 1and i = t give

$$\begin{pmatrix} 2t \\ 2t-1 \end{pmatrix} L_m F_m^{2t-1} 5^{t-1} + \begin{pmatrix} 2t \\ 2t+1 \end{pmatrix} L_m^{-1} F_m^{2t+1} 5^t = (2t) L_m F_m^{2t-1} 5^{t-1} + 0.$$

Now,

$$L_m \not| F_m, m > 1,$$
 and $L_m \not| 5^{t-1}, t > 1.$

Thus, $L_m^2 | 2^{2t-1} F_{m(2t)}$ if and only if $L_m | 2t$. If L_m is odd,

$$L_m^2 | F_{2mt}$$
 iff $L_m | t$, or, $L_m^2 | F_{mr}$ iff $L_m | r$.

The same result holds for L_m even, which case depends upon the fact that 4 is the largest power of 2 that

divides the Lucas sequence. If L_m is even, m = 3q. If m is even, L_m contains exactly one factor of 2, while $F_{mr} = F_{(3q)}(2t) = F_{6t}$ contains at least three factors of 2, since $F_6 = 2^3$ is a factor of F_{6t} . If m = 3q is odd, then L_m contains exactly two factors of 2, and $L_m | 2t$ iff t = 2s for some integer *s*, making $F_{mr} = F_{12qs}$, a multiple of $F_{12} = 144 = 2^4 \cdot 3^2$. Thus, for L_m even, if $L_m^2 | 2^{r-1}F_{mr}$, then $L_m^2 | F_{mr}$. Notice that, since also L_m^3 divides all terms of (3.4) for *r* even and i < [r/2] - 1, it can be shown in the same

manner that

$$L_m^3 \mid F_{mr}$$
 iff $L_m^2 \mid r$, or, $L_m^3 \mid F_{2mt}$ iff $L_m^2 \mid t$.

We summarize these results as follows.

Theorem 3.2. If r is even, $L_m^2 | F_{mr}$ iff $L_m | r$, and $L_m^3 | F_{mr}$ iff $L_m^2 | r$. Further, $L_m^2 | F_{2mt}$ iff $L_m | t$ and $L_m^3 | F_{2mt}$ iff $L_m^2 | t$. If r is odd, $L_m^2 \not\mid F_{mr}$, m > 1.

4. GENERALIZED FIBONACCI NUMBERS

The Fibonacci polynomials $f_n(x)$ are defined by

$$f_0(x) = 0,$$
 $f_1(x) = 1,$ $f_{n+1}(x) = xf_n(x) + f_{n-1}(x),$

and the Lucas polynomials $L_n(x)$ by

$$L_0(x) = 2,$$
 $L_1(x) = x,$ $L_{n+1}(x) = xL_n(x) + L_{n-1}(x).$

Since (1.3) is also true if we replace F_n by $f_n(x)$ (see [2]), we can write

(4.1)
$$f_{mr}(x) = \sum_{k=0}^{\prime} {\binom{r}{k}} f_m^k(x) f_{m-1}^{r-k}(x) f_k(x).$$

Notice that $F_m = f_m(1)$ and $L_m = L_m(1)$. The Pell numbers 1, 2, 5, 12, 29, 70, \dots , P_n , \dots , $P_{n+1} = 2P_n + P_{n-1}$, are given by $P_n = f_n(2)$. Thus, (4.1) also holds for Pell numbers, which leads us to

Theorem 4.1. For the Pell numbers P_n , $P_m^2 | P_{mr}$ iff $P_m | r$.

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue R_n of the Pell numbers is given by $R_n = P_{n+1} + P_{n-1}$, then $L_n(2) = R_n$, and we can write, eventually,

Theorem 4.2. If r is odd, $R_m^2 | R_{mr}$ iff $R_m | r$. If r is even, $R_m^2 | P_{mr}$ iff $R_m | r$.

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci polynomials.

5. DIVISIBILITY BY FIBONACCI PRIMES

From [3], [4] we know that a prime $p | F_{p-1}$ or $p | F_{p+1}$ depending upon if $p = 5k \pm 1$ or $p = 5k \pm 2$. For example, $|3| F_{14}$, but, note that the prime 13 enters the Fibonacci sequence earlier than that, since $F_7 = 13$. From $p | F_{p\pm 1}$ one can easily show that $p^2 | F_{p^2\pm p}$, but squares of primes which are also Fibonacci numbers divide the sequence earlier than that; i.e., $F_7 = 13$, and $13^2 | F_{g_1} = F_{7,13}$, where of course, $F_{7,13} < F_{13^2+13}$. If p is a Fibonacci prime, if $p^2 = F_m^2 | F_{mr}$, then p | r and the smallest such r is p itself, so that $p^2 | F_{mp}$. If $p = F_m$, then $m since <math>F_{p \pm 1} > p$ for p > 5. Thus, $F_{mp} < F_{p^2 \pm p}$.

Are there other primes than Fibbnacci primes for which $p^2|F_n$, $n < p(p \pm 1)$?

7

REFERENCES

- 1. Yu V. Matijasevič, "Enumerable Sets are Diophantine," *Proc. of the Academy of Sciences of the USSR*, Vol. 11 (1970), No. 2.
- 2. V. E. Hoggatt, Jr., John W. Phillips, and H. T. Leonard, Jr., "Twenty-Four Master Identities," *The Fibonacci Quarterly*, Vol. 9, No. 1 (Feb. 1971), pp. 1–17.
- V.E. Hoggatt, Jr., and Marjorie Bicknell, "Some Congruences of the Fibonacci Numbers Modulo a Prime p," Mathematics Magazine, Vol. 47, No. 4 (September-October 1974), pp. 210–214.
- 4. G.H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, 4th Ed., Oxford University Press, 1960.

LETTER TO THE EDITOR

Dear Sir:

March 20, 1974

I would like to contribute a note, letter, or paper to your publication expanding the topic presented below. Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as the sides increase:

(1)
$$3, 4, 5, -21, 20, 29 - 119, 120, 169 - \cdots$$

Following is another sequence of such "Pythagorean" triangles, the smallest angle approximating 30 degrees as the sides increase:

(2) 15, 8, 17 – 209, 120, 241 – 2911, 1680, 3361 – **2**3408, 40545, 46817 – 564719, 326040, 652081 …

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5, and so on.

Let g_k and g_{k-1} be any two positive integers, $g_k > g_{k-1}$. Then, as is well known,

(3)
$$g_k^2 - g_{k-1}^2$$
, $2g_k g_{k-1}$, and $g_k^2 + g_{k-1}^2$

are the sides of a Pythagorean triangle.

Now let m and n be two integers, non-zero, and let

(4)

$$g_{k+1} = ng_k + mg_{k-1}$$

to create a sequence of g's.

If $g_1 = 1$, $g_2 = 2$, m = 1, n = 2, substitution in (4) and (3) gives the triangle sequence in (1) above.

If $g_1 = 1$, $g_2 = 4$, m = -1, n = 4, the resulting triangle sequence is (2) above.

If the Fibonacci sequence itself is used (m = n = 1), a triangle sequence results in which the ratio between the short sides approximates 2:1.

In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the legs, or of the hypotenuse to one leg, approximates any given positive rational number p/q (p and q positive non-zero integers, $p \ge q$). It is easy to obtain m and n and good starting values g_1 and g_2 given p/q, and there is more to the topic besides, but I shall leave all that for another communication.

For all I know, this may be an old story, known for centuries.

However, Waclaw Sierpinski, in his monograph *Pythagorean Triangles* (Scripta Mathematica Studies No. 9, Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such triangle sequences, unless I missed it in a hasty reading. He obtains sequence (1) above by a different method (Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given angle in the first quadrant (Chap. 13); but again, the method differs from the one I have outlined.

[Continued on page 10.]