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1. INTRODUCTION 

In Matijasevic's paper [1] on Hilbert's Tenth Problem, Lemma 17 states that F2
m divides Fmr if and only if 

Fm divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci num-
bers and explore divisibility by higher powers. 

In [2 ] , Matijasevic's Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for Fmr. Since 
that proof is the basis for our extended results, we repeat it here. 

We let a= (1 +\/5)/2, (5= (1 - yJs)/2. Then it is well known that the Fibonacci numbers Fn are given by 

(1.1) Fn = 5 L ^ | _ 
a- p 

and that 

(1.2) am = aFm + Fm_1f (3m = ^Fm + Fm,1 . 

Combining (1.1) and (1.2) with the binomial theorem expansion of amr and fimr gives 
„mr n/nr r . % , , / _/r nk \ 

k=0 

so that 

(1-3) Fmr-J:(r
k)F

k
mFr-11Fk. 

k=0 

Since FQ= 0 and Fm divides all terms for k > 2, 

Fmr *(rj) FmFr~l1F1 ^ rFmFr~l1 (mod F2
m) . 

Since (Fm, Fm-f) = 7, it follows easily that 

(1.4) Fm\Fmr if and only if Fm\r. 

2. DIVISIBILITY BY OTHER FIBONACCI POWERS 

The proof of (1.4) can easily be extended to give results for divisibility by higher powers. 
Since Fm 

of Section 1 
Since Fm divides all terms of (1.3) for k > 3, and since Fj = F2= 1, proceeding in a manner similar to that 

F = rF Fr~1 + (iLzJl F2 Fr~2 (mnri F3 ) 

When r is odd, (r - V/2 = k is an integer, and 

S\nce(Fm/Fm.1)=l 

Fmr = rFmFr
r^

2
1(Fm.1+kFm) (mod Fm) . 

Fm^(Fm.1+kFm) and Fm \ F^,, 

so that F I Fmr if and only if F \r. 
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If r is even, 
L
2 FmFr^1(2Fm.1 + (r- l)Fm) (mod F3

m) 

\UFm,2Fm-1)= 1, then Fm\Fmr\i and only if F^\r. Thus, we have proved 

Theorem 2.1. Whenever rh odd, F3
m\Fmr\\\ F^\r. Whenever/^ is odd, F^\Fmr iff FJ*,\r. 

Sinilarly, since F-j = F2- 7 and Fj = 2, from (1.3) we can write 

F - rF Fr~1 + r(r~ 1) F2 Fr~2 + r(r~ 1>(r~2> F3 Fr~3 (mnrl F4 ) 

since Fm divides every term for k > 4. 
\ir=6k± 1, then/V- 1)/2 = j and (r- 1)(r~ 2)/3 = / for integers/ and I, so that 

Fmr^rFmFr^1(F
2

m,1i-jFmFm,1 + iF2
m) (mod F4

m). 

As before, since f f m , Fm.1 ) = 1, F^\Fmr\ii F^\r, r = 6k±L 
If r = 5Ar, then 

W - jFm Fm-1 (®Fm-1 + 3^~ ^Fm Fm-7 + 2(r - 1)(r - 2)F2J (mod F%) . 

\UFm,6F2
m_1)= 1, then F4

m \Fmr iff F* |£ . Note that (Fm,6)= 1 if /?? t 5 ^ /?? ^ The casesr = 6k±2 

and /* = 6k ± J are similar. Thus, we have proved 

Theorem 2.3. Wheneverr=£*± 7, f ^ | / W i f f F^|r. Wheneverm ^3?, m f 4q, F4
m\Fmr\\\ F%\r. 

Continuing in a similar fashion and considering the first terms generated in the expansion of Fmn we could 
prove that whenever r = 6k± 1, or m ? 3q, 4q, 

F5
m\Fmr iff F4

m\r, and also F6
m\Fmr iff F%\r, 

but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state 
that, whenever r = k(s - 1)1 ± 1, Fs

m\Fmr\\\ F^1\r, by carefully considering the common denominatorof the 
fractions generated from the binomial coefficients. 

We summarize these cases in the theorem below. 

Theorem 2.4. Whenever r = 6k± 1, 

Whenever m 13q, m ? 4q, 

Whenever r= k(s- 1)!± 1, 

Fm\Fmr iff F%1 \rt s = 1,2,3,4,5,6. 

Fm\Fmr iff F%1 \r, s = 1,2,3,4,5,6. 

Fm\Fmr ™ FS~1 \r. 

Next, we make use of a Lemma to prove a final theorem for the general case. 

Lemma. If sn~1\r, then snk\(k
r), k=1,-,n. 

Proof. \in<r, then /r </7 < r. Cases'/r = 7 and £ = /-are trivial. Case s = 1 is trivial. If s11'1 \r, then r = Msn~1 

for some integerM, and 

t r \ = L C- M = Ms"~1 I1" 1 \ = Msk~1sn~k tr-1\ 
\k) k U - V k [ k- 1 ) k \k- 1 I ' 

If 

then 

If 

k\Msk'1 i r ~ 1 

„n-k\ 
U) • 
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then 
k\Msq {r

kZ_]) . k < q < „, 

since (^\ is an integer. That is, k = pqNf wherep is some prime. 

But /r <pq for/7 > 2 and q > k > 0, a contradiction, so that k must divide 

nk-1 I r -1 \ , n-k\ Ms" a : 7 , ) - »"" ^%r
k) 

It is impossible for n > r. If n < r, then sn~1 \r implies Ms11 1 = r, where n- 1 > rf and where M is an inte-
ger. Buts"" 7 >rtars> 2, n- 1 > r. 

Theorem. If F%1\r, then Fs
m\Fmr. 

Proof. 
r 

fmr = J2 (k) FmFm-1Fk -
k=0 

(Fm< Fm-1> = h so that if F^ \r, then Fs
m divides rFmFr^lp If F8^1 divides/; then F^ divides (£ ) for k 

the Lemma, ar 
have a factor Fm while F^ appears as a factor of ( f ) 

These theorems allow us to predict the entry point of 
The entry point of a numbers in the Fibonacci sequence is the subscript of the first Fibonacci number of which 
n is i 
or 6. 

If k>s, then Fb
m divides each term. Si nee FQ= 0, Fb

m divides the term k = 0. When k= 7, the term i s r F ^ F ^ i ; . 
" *'r, then Fs

m divides rFmFr^[v If Fs^1 divides/; then F ^ divic 
/, •••, s by the Lemma, and Fs

m divides each successive term for k= 7, —, s, since in the kth term we always 

These theorems allow us to predict the entry point of Fm in the Fibonacci sequence in limited circumstances. 
snee is the subscript of the first Fibonaci 

n is a divisor. When m / 3j or 4j, the entry point of F in the Fibonacci sequence \smF~ for k = 1, 2, 3, 4, 5, 

3. DIVISIBILITY BY LUCAS SQUARES 

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analo-
gous to (1.1), the Lucas numbers Ln obey 

(3.1) Ln = a" +f 

and _ 
/nni m _ Lm + \J5 Fm „m _ Lm — \J5 Fm 

Combining (3.1) and (3.2) with the binomial theorem expansion of amr and fimr, 

Lmr = amr + $mr =(^m±^Im_) " + (Ln^z^/SF, m 
2 

J=o 

When/ is odd, all terms are zero. We let/ = 21 and simplify to write 

[r/2] 
(3-3) Lmr2

r'1 = £ ( ^ Ltf'F**1 . 
i=0 

All terms on the right of (3.3) are divisible by L^ except the last term, / = [r/2]. \\r=2t, the last term is 

(2t\ L0 F2trt = 5tF2t 
\2tl rn rm ° 3 rm -
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Since 5 X Lm for any m and Lm >[ Fm for any m > 1, Lm J(2r~1 Lmr, m > 7. However, if r = 2t + 7, the 
last term is 

r-2t 
[2t2t1) LmF*5<=(2t+V5tLmF* 

and 22tL(2t+Dm is divisible by Lm if and only if Lm\(2t + 11 m > 1. If m / 3q, then (Lm, 2) = 1, 
and L^\Lm(2t+i) if and only if Lm\(2t+ 1). If m = 3q, then Lm is even, so that 

Lm)((2t+1), and Lm\22tL(2t+i)m, m> U 

Return to (3.3) and notice that, when r = 2t+ 7, all terms except the last are divisible by Lm, so that 

L3
m\Lmr iff L2

m\(2t+1), m > 1. 

We summarize these results as 

Theorem 3.1. Whenever/- is odd, 

L2
m\Lmr iff Lm\r, and Lm\Lmr iff Lm\r. 

Whenever/"is even, Lm )(Lmr,m > 7. If/77 = 3q > 1, then Lm \Lmr for any r. 
We can also determine criteria for divisibility of Lmr by Fm and Fmr by Lm. It is trivial that Fm\Lmr for 

m / 1, 2, 3, 4, since F^ >̂  Z.n for other values of m. To determine when Lm \ Fmr, return to (3.1) and (3.2), 
and use (1.1) and the binomial expansion of aW rand j8A77/" to write an expression for Fmr in terms of Lm. (Re-
call that sj~5 =a-$.) 

lr _ Rmr = (Lm + \J5 Fm\ _ lim-\l5 Fn 

1 

j=0 

Here, whenever/ is even, all terms are zero. Setting/ = -?/ + 7 and rewriting, we obtain 
[r/2] 

j5Fmr=M £ ( n ^ ) L£2i~1F%+1-(j5)2i+1-2 
i=0 

[r/2] 

(3-4) 2r-1Fmr= £ ( 2 / ; 7 ) C 2 / - 7 ^ / ^ -
i=0 

Notice that, whenr = -2f + 7, Z.̂ , divides all terms of (3.4) f o r / < //-/?/. When/- [r/2] = t, the last term is 

(2t+1\ ,0 F2t+1rt = ctF2t+1 
\2t+ 1 I m m m 

which is not divisible by Lm, m > 1, since Lm j{ Fm, m > 7, and Lm \ 5t for any t > 0. That is, if r is odd, 
Lm%Fmrt°r anY m > 1-

However, when r is even, Lm divides all terms of (3.4) for / < [r/2] - 7. If r = 2t, then the terms i= t - 7 
and i = t give 

Now, 
^ ^ /w > 7, and Lm^1. f > 7. 

Thus,/.^ l ^ - ^ m f c t j t f a n d only if Lm \2t If Am is odd, 

Lm I f 2mf iff Lm \ t or, A* | Fmr iff A^ | r. 
The same result holds for Lm even, which case depends upon the fact that 4 is the largest powerdf 2that 
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divides the Lucas sequence. If Lm is even, m = 3q. If m is even, Lm contains exactly one factor of 2,, while 
Fmr = F(3q)(2t) = F6t contains at least three factors of 2, since F$ = 23 is a factor of % r . If m = 3q is odd, 
then Lm contains exactly two factors of 2, and Lm \ 2t\\\ t = 2s for some integers, making Fmr = F^qs, a mul-
tiple of F 12= 144 = 24-32. Thus, for Z.^ even, if Lm\2r'1 Fmr, then Lm \ Fmr. 

Notice that, since also Lm divides all terms of (3.4) for /-even and/< [r/2] - 1, it can be shown in the same 
manner that 

L3
m\Fmr iff L2

m\r, or, 
We summarize these results as follows. 

Theorem 3.2. If/-is even, 
Lm\Fmr iff Lm \r, and 

Further, 
Lm I F2mt 'ff Lm \ * and 

If /-is odd, Lm'J(Fmr, m > 1. 

4. GENERALIZED FIBONACCI NUMBERS 

The Fibonacci polynomials fn(x) are defined by 

f0(x) = 0, frfx) = I fn + lM = xfnM + fn-rfx), 

and the Lucas polynomials Ln(x) by 

L0(x) = 2, Lj(x) = x, Ln+1(x) = xLn(x) + Ln-j(x). 

Since (1.3) is also true if we replace Fn by fn(x) (see [2]), we can write 

(4.D ww - E (r
k) dwcV^w. 

k=0 

Notice that Fm = fm(1) and Lm = Lm(1). The Pell numbers 1, 2, 5, 12, 29, 70, - , Pn, - , Pn+1 = 2Pn +Pn-1, 
are given b y / ^ = fn(2). Thus, (4.1) also holds for Pell numbers, which leads us to 

Theorem 4.1. For the Pell numbers/>„, Pm \Pmr'^pm \r. 

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue Rn of the 
Pell numbers is given by Rn = Pn+-j +Pn-i, then Ln(2) = Rn, and we can write, eventually, 

Theorem 4.2. If r is odd, Rm \ Rmr iff Rm \r. If r is even, Rm \ Pmr iff Rm | r. 

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci 
polynomials. 

5. DIVISIBILITY BY FIBONACCI PRIMES 

From [3] , [4] we know that a prime p\Fp-j or p\Fp+i depending upon if/? = 5k±1 or/7 = 5k ±2. For ex-
ample, 13 \Fi4, but, note that the prime 13 enters the Fibonacci sequence earlier than that, since Fy= 13. From 
P\ Fp±i one can easily show that/? \Fp

2±p, but squares of primes which are also Fibonacci numbers divide the 
sequence earlier than that; i.e., Fy - 13, and 13 \Fgj = Fy. 13, where of course, Fy. 13 < F131+13. If/? is a 
Fibonacci prime, if/? - Fm\Fmr then /7 |r and the smallest such r\sp itself, so that p2\Fmp. \f p = Fm, then 
m <p ± 1 since Fp±1 >/? for/? > 5. Thus, Fmp < Fp^+p -

Are there other primes than Fibonacci primes for which p2\Fn, n<p(p ± 1)? 

L3
m\F2mt iff L2

m\t. 

L3
m\Fmr iff L2

m\r. 

L3
m | F2mt iff L2

m 11 
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AAAAAAA 

LETTER TO THE EDITOR 

March 20, 1974 
Dear Sir: 

I would like to contribute a note, letter, or paper to your publication expanding the topic presented below. 
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as 

the sides increase: 
(1) 3 , 4 , 5 , - 2 1 , 2 0 , 2 9 - 119, 120, 1 6 9 - - . 

Following is another sequence of such "Pythagorean" triangles, the smallest angle approximating 30 degrees 
as the sides increase: 
(2) 15,8, 17-209, 120,241-2911, 1680,3361-23408,40545,46817-564719,326040,652081 ••• 

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5, 
and so on. 

Let#£ and#£_/ be any two positive integers,^ >gk-i • Then, as is well known, 

(3) df-Sk-p ?9k9k-l, and 9k+9k-i 

are the sides of a Pythagorean triangle. 
Now let/77 and n be two integers, non-zero, and let 

W) gk+1 = ngk + mgk-i 

to create a sequence of g's. 
If #7 = l 92 = Z m = 1, n = 2, substitution in (4) and (3) gives the triangle sequence in (1) above. 
If 91 = h 92 = 4, m = -1, n = 4, the resulting triangle sequence is (2) above. 
If the Fibonacci sequence itself is used (m = n = 7), a triangle sequence results in which the ratio between the 

short sides approximates 2:1. 
In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the 

legs, or of the hypotenuse to one leg, approximates any given positive rational number/?/<7 (p and q positive 
non-zero integers,/? > q). It is easy to obtain m and n and good starting valuesg-j and#2 given/?/#, and there is 
more to the topic besides, but I shall leave all that for another communication. 

For all I know, this may be an old story, known for centuries. 
However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9, 

Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such 
triangle sequences, unless I missed it in a hasty reading. He obtains sequence (1) above by a different method 
(Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given 
angle in the first quadrant (Chap. 13); but again, the method differs from the one I have outlined. 

[Continued on page 10.] 


