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The purpose of this note is to state and prove a result in analytic number theory that seems largely to have 
been overlooked. The usefulness of this result is illustrated by applying it to obtain an extremely simple proof 
of an estimate for a certain set of integers. 

Let the letter/7 be used to denote primes. 

Theorem 1. If fh multiplicative, then a necessary and sufficient condition that 

n=1 

converge absolutely is that 

n £ \ffpn)\ 
p n=0 

converge. Furthermore, in the case of convergence, 

£ ffn) - n ( £ f(Pn)) . 
n=1 p \n=0 J 

Before we prove the theorem a few comments seem to be in order. The necessity is proved by Hardy and 
Wright [7, Theorem 286]. However, Hardy and Wright do not prove or even state the sufficiency condition 
above. Both necessary and sufficient conditions are stated by Ayoub [ 1 , Theorem 1.5], but his statement of 
the sufficiency condition is careless and the proof given is not adequate. 

Proof of Sufficiency. Let the increasing sequence of positive primes be denoted p / , P2, ••• and let t be 
a fixed integer. Then the general term in the product 

h(t\f(p?>\) 
i=1 x k=0 

is of the form 
\f<P°ti)\f(pas)\-\f(pV>\ = \f(P*lPas-PV>\. 

where 
a, > 0 (1 < / < t). 

The last equality is true because f is multiplicative. An integer n will appear in this product (as argument of f) if 
and only if it has no prime factors other thmpi,p2, —,PP By the unique factorization theorem it will then 
appear only once. Thus 

I I E V(Pi)\ = HV(n)\ , 
i<t k=0 (t) 

where the last summation is over all integers n whose only prime factors are in the set/7 /, P2, ••*, Pp Thus 

n f \f(Pkt\ - f«im. n £ \f(p*)\ = ^ £ \f(»>\ • 
p k=0 i<t k=0 (t) 
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Now 
Pt 

^ E \f(n>\ < E I ^ I =Bt. 
n=1 (t) 

since the summation on the right includes at least those on the left. Since {Bt} converges, it is bounded, and 
therefore [At] is a bounded, non-decreasing sequence. The fundamental theorem on monotone sequences ap-
plies and hence iAt} converges. But {At} is a subsequence of the partial sums {sn}oi the series 

£ I'M-
n=1 

It follows that [ ^ } converges and the proof is complete. 
Before we obtain the asymptotic result mentioned above we need the following definition. Let L represent 

the set of positive integers n with the property that/7 divides A? implies that/?2 divides n. An integer in L is call-
ed a square-full integer. The characteristic function of L will be denoted by 1(n) and the summatory function of 
1(n) will be denoted Ux), so that 

LM = E 7M-

The proof of our result depends upon a famous theorem on series due to Kronecker (cf. [9, p. 129]). We give 
it in arithmetical form. 

Lemma 1. If f\s an arithmetical function and 

E . f(nt/n 
n=1 

is a convergent series, then f has mean value ft that is, 

lim 1- Y f(n) = 0. 
n<x 

We now prove that /.has density 0. 

Theorem 2. The set L has density 0; that is, 
lim ±M = 0 . 

Proof. By Lemma 1 we need only show that XUni/n converges. But by Theorem 1 and the multiplicativity 
of Un), it suffices to show that 

n ( s ^ ) 
p n=0 H 

n ( i \ H 1 ) - n(i+f + 7-^ *•••)- n e+"p2 +^3+-> = n ( / ^ ) 

p Kn=0 P 

is convergent By definition of Un) 

,2 

' n=0 P 

which is convergent. 
Earlier proofs of this result were given by Feller and Tournier [6, §9] and Schoenberg [10, §12]. In addi-

tion Erdos and Szekeres [5 ] , Hornfack [8 ] , and Cohen [2] , [3] have considered generalizations of the above 
problem. For a discussion of previous results including refinements of Theorem 2, see [3] and [4 ] . 
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ADDITIVE PARTITIONS I 

V. E. HOGGATT,JR. 
San Jose State University, San Jose, California 95192 

David Silverman in July 1976 found the following property of the Fibonacci Numbers. This Theorem I was 
subsequently proved by Ron Evans, Harry L. Nelson, David Silverman, and Krishnaswami Alladi with myself, 
all independently. 

Theorem I. The Fibonacci Numbers uniquely split the positive integers, N, into two sets AQ a n d ^ 
such that 

AQ U At = N 
A0 n At = 0 

and so that no two members of AQ nor two members of A 7 add up to a Fibonacci number. 

Theorem. (Hoggatt) Every positive integer n £ F^ is the sum of two members of A0 or the sum of 
two members o f / l ; . 

Theorem. (Hoggatt) Using the basic ideas above the Fibonacci Numbers uniquely split the Fibonacci 
Numbers, the Lucas Numbers uniquely split the Lucas Numbers and uniquely split the Fibonacci Numbers, and 
\5F}^=2 uniquely splits the Lucas Sequence. 


