UNIFORM DISTRIBUTION FOR PRESCRIBED MODULI

STEPHAN R. CAVIOR

State University of New York at Buffalo, Buffalo, New York 14226

In [1] the author proves the following

Theorem. Let p be an odd prime and $\{T_n\}$ be the sequence defined by

$$T_{n+1} = (p+2)T_n - (p+1)T_{n-1}$$

and the initial values $T_1 = 0$, $T_2 = 1$. Then $\{T_n\}$ is uniformly distributed (mod *m*) if and only if *m* is a power of *p*.

The proof of the theorem rests on a lemma which states that if p is an odd prime and k is a positive integer, p + 1 belongs to the exponent p^k (mod p^{k+1}). The lemma is also proved in [1].

Since for each positive integer k, 3 belongs to the exponent $2^{k-1} \pmod{2^{k+1}}$, (see [2, §90]), the lemma and the theorem cannot be extended to the case p = 2. It is the object of this paper to find a sequence of integers which is uniformly distributed (mod m) if and only if m is a power of 2.

We will need the following

Lemma. For each positive integer k, 5 belongs to the exponent $2^k \pmod{2^{k+2}}$.

Proof. See [2, § 90].

Theorem. The sequence $\{T_n\}$ defined by

$$T_{n+1} = 6T_n - 5T_{n-1}$$

and the initial values $T_1 = 0$ and $T_2 = 1$ is uniformly distributed (mod m) if and only if m is a power of 2.

Proof. The formula of the Binet type for the terms of $\{T_n\}$ is

$$T_n = \frac{1}{2}(5^{n-1} - 1)$$
 $n = 1, 2, 3, \cdots$

To prove this, note that the zeros of the guadratic polynomial

$$x^2 - 6x + 5$$

associated with $\{T_n\}$ are 5 and 1. Solving for c_1 and c_2 in

$$c_1 \cdot 5 + c_2 = 0$$

 $c_1 \cdot 5^2 + c_2 = 1$.

we find $c_1 = 1/20$ and $c_2 = -1/4$. Therefore

$$T_n = \frac{1}{20} 5^n - \frac{1}{4}$$
 $n = 1, 2, 3, \cdots,$

which agrees with the result above. Similar derivations are discussed in [3].

PART 1. We show in this part of the proof that $\{T_n\}$ is uniformly distributed (mod 2^k) for $k = 1, 2, 3, \cdots$. First we prove that $\{T_i : i = 1, \dots, 2^k\}$ is a complete residue system (mod 2^k). Accordingly, suppose that

$$T_i \equiv T_i \pmod{2^k},$$

where $1 \leq i, j \leq 2^k$. Then

or

UNIFORM DISTRIBUTION FOR PRESCRIBED MODULI

Assuming $i \ge j$, we write

where $\theta \leq e \leq 2^k - 1$. Then

 $5^e = 1 \pmod{2^{k+2}}$.)

 $5^{j-1} \cdot 5^e \equiv 5^{j-1} \pmod{2^{k+2}},$

But by the lemma, 5 belongs to the exponent $2^k \pmod{2^{k+2}}$, so e = 0 and i = j. Next, we note that as a consequence of the lemma,

$$5^{2^{R}+i-1} = 5^{i-1} \pmod{2^{k+2}}$$
 $i = 1, 2, 3, \cdots$

or

$$T_{2k} = T_i \pmod{2^{k+2}} \quad i = 1, 2, 3, \cdots$$

Thus we see that the complete residue system (mod 2^k) occurs in the first and all successive blocks of length 2^k in $\{T_n\}$, proving that $\{T_n\}$ is uniformly distributed (mod 2^k).

PART 2. We prove in this part that $\{T_n\}$ is not uniformly distributed (mod *m*) unless *m* is a power of 2. If $\{T_n\}$ is uniformly distributed (mod *m*), it is uniformly distributed (mod *q*) for each prime divisor *q* of *m*. We show that $\{T_n\}$ is not uniformly distributed (mod *q*) if $q \neq 2$.

Suppose first that q = 5. Then

$$T_{n+1} = 6T_n - 5T_{n-1} \equiv T_n \pmod{5}.$$

Hence $\{T_n\}$ (mod 5) is $\{0, 1, 1, 1, \dots\}$. Suppose finally that $q \neq 2.5$. We show that

(1) and	$T_q \equiv 0 \pmod{q}$
(2) Note (1) is equivalent to	$T_{q+1} \equiv 1 \pmod{q}.$ $rac{1}{3} (5^{q-1} - 1) \equiv 0 \pmod{q}$
or (3) which is equivalent to the pair	$5^{q-1}\equiv 1\pmod{4q}$ $5^{q-1}\equiv 1\pmod{4}$
and	$5^{q-1} \equiv 1 \pmod{q}$

both of which are elementary. Eq. (2) also reduces to (3). Equations (1) and (2) imply that the period of $\{T_n\}$ (mod q) divides q - 1, so at least one residue will not occur in the sequence. Therefore, the distribution of $\{T_n\}$ (mod q) is not uniform.

REFERENCES

- Stephan R. Cavior, "Uniform Distribution (mod m) of Recurrent Sequences," The Fibonacci Quarterly, Vol. 15, No. 3 (October 1977), pp.
- 2. C. F. Gauss, *Disguisitiones Arithmeticae*, Yale University Press, New Haven, 1966.
- 3. Francis D. Parker, "On the General Term of a Recursive Sequence," *The Fibonacci Quarterly*, Vol. 2, No. 1 (February 1964), pp. 67–71.

210

Oct. 1977