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Let the number # be a primitive root (mod/7). \ix = g satisfies the congruence 

(1) x2 = x + 1 (mod/?), 

then the g is called Fibonacci Primitive Root. D. Shanks [1] and D. Shanks, L Taylor [2] dealt with the con-
dition of existence of the Fibonacci Primitive Roots and they proved a few theorems. 

In connection with the Fibonacci sequence 

F0 = I Ft = 1, F2 = 1, F3 = 2, .~(Fn = Fn^+Fn„2), 

the natural number a = a(p) is called by D. Jarden [3] the rank of apparition of/? if Fa is divisible by/? and F{ 
is not divisible by /? in case / < a. 

In this article, we shall deal with the connections between the rank of apparition of prime/? in the Fibonacci 
sequence and the Fibonacci Primitive Roots. We shall prove the following theorems: 

Theorem 1, The congruence*2 ^x-/- / (mod/?) is solvable if and only if/? - / is divisible by a(p) or/?=5. 

Theorem 2. If/? = 10k ± 1 is a prime number and there exist two Fibonacci Primitive Roots (mod/?) or 
no Fibonacci Primitive Root exists, then a(p) <p - 1. 

Theorem 3, There is exactly one Fibonacci Primitive Root (mod/?) if and only if a(p) =p - 1 or/? = 5. 

D. Shanks [1] proved that if (1) is solvable then p = 5 or /? = 10k ± 1. But D. H. Halton [4] proved that 
Fp~(5ip) is divisible by the prime p (p /= 5), where (5/p) is the Legendre's symbol, and it is well known that if 
p = 10k ± 1, then (5/p) = 1, therefore Fp_f is divisible by/?. So it is enough to prove the following lemma for 
the verification of the first part of Theorem 1: 

Lemma 1. If Fn is divisible by number/?, then n is divisible by the rank a(p) of/? and if/7 is divisible by 
a(pI then Fn is divisible by/?. 

Let a = a(p) and n = a-m + r, where 0 <r<a. U.U. Vorobev proved that Fy+C = F^-Fc+i + F\y.^Fc ( [5 ] , 
p. 10) and Fb.c is divisible by Fy for every natural numbers/? and c ( [5 ] , p. 29). For this reason/? is a divisor 
of Fa.m and if/? is a divisor of Fn, then 

Fn = Fam+r = Fam^Fy+i + Fam„i-Fr = Fam_i-Fr = 0 (mod/?). 

But Fam and Fam^ are neighboring numbers of the Fibonacci sequence, for that very reason Fam_i is prime 
to Fam (see [5 ] , p. 30). So/? is not a divisor of Fam_i because/? is a divisor of Fam and Fr = 0 (mod/?). From 
this follows a = r by reason of definition of a = a(p). Thus/? is divisible by a = a(p). Should it happen that/? is 
divisible by a = a(p), then, due to the Vorobev's previous theorem, Fn is divisible by Fa(pj and so Fw is "divisible 
by/7, too. With this we proved the Lemma 1 and from this follows the proof of the first part of Theorem 1. 

If /? - / is divisible by a(p), then by reason of Lemma 1 F^i is divisible by /?. From this follows that (5/p) = 
= 1. Namely, if (5/p) = - 7 , then Fp+i is divisible by/?, too, and so Fp = Fp+i - Fp_i also Is divisible by p. 
But F{ and F[+i are relatively prime for every natural number/, therefore (5/p) = 1. From this follows that 
/? = 10k ± 1 and so the congruence (1) is solvable. It completes the proof of Theorem 1. 

Before the proof of Theorem 2 and Theorem 3, we shall prove two Lemmas. 

Lemma 2. If the congruence x = x + 1 (mod /?) is solvable, p / 5 and the two roots are g^, g2, then 
Ql - #2 ^ 0 (mod p). 
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Lemma 3, If x is a solution of the congruence x =x+ 1 (mod/?), then 

xk = Fk-x + ^k-l (mod/7) 
for every natural exponent k. 

Let us prove the Lemma 2 first. If (1) has solutions^ and Q2, then g^ + g2^ 1 (mod/?) and g2 = 1 -
g<L (mod/?), respectively (see [1]). Let us suppose t ha t#^ -#2 = 0 (mod/?), that is 

(2) 29l = 1 (mod/?). 

gi is a root of (1) and $og2 =gi + 7 (mod/?). Let us add this congruence to (2). Then we qetgj+gi =7(mod 
p) and from this 4g1 +4g^ = 8 (mod/?) and (2g^ + I)2 = 9 (mod/?), respectively. From the later congruence 
we get 2g± + 7 = 3 or 2g^ + 1 = -3 (mod /?) and from these subtracting the congruence (2) we get 5 =. 0 
or 7 = 0 (mod/?). But these are true only if/? = 5according to/? >7 , which proves the Lemma 2. In case/? =5 
really #^ -g2 =0 (mod/?) becauseg^ = 3 mdg2 = 1 - gi = -2 =g^ (mod 5). 

We shall carry out the proof of the Lemma 3 by induction over k. In the cases k = 7 and k = 2 indeed 

x = x +0 = Fi«x +FQ and x2 = x^ 7 = F2-x + F^ (mod/?). 

After this if k > 2 and the statement is true for exponents smaller than k, then 

= -Fk-x + Fk-i (mod/?) 
which proves Lemma 3. 

Now let us suppose that/? = 10k± I In this case by reason of [1 ] , (1) is solvable. If both roots#j and #2 are 
primitive (mod/?), then, according to Lemma 3 (using for every primitive rootg(p~ '' = —1 (mod/?) ) 

g^'1)'2 EE F(p„1)i2>gi + F(p_1)/2-i = - / (mod/?) 

^ - i J / 2 ^ F(p_1)/2>g2 + F(p„1)/2-1 = -1 (mod/?). 

The difference of the congruences gives: F(p_ij-/2(gi ~ #2^ = 0 (mod /?) and from this follows by reason of 
Lemma 2 (p/5) that F(p-i)/2 = 0 (mod/?) which by reason of Lemma 1 proves the first part of Theorem 2. 

Let us suppose that neither^ nor #2 »s primitive root (mod/?) a n d ^ belongs to the exponent/?^ and #2 be-
longs to the r)2. Then rif and /?2 are divisors of p— 7 f/7^, /?2 <p- V and 

(3) ^ ES 7, • ^ ^ 7 (mod/?). 

If n^ = ri2 = n, then similarly to the previous cases, using the congruences (3) and the Lemma 3, we get Fn = 0 
(mod /?) and so n is divisible by a(p), that is a(p) <n < / ? - 7. 

If A?J / /?2, then we can suppose that n 1 > 02. But # r # 2 = ~7 (mod/?) (see [1]) for this reason, using the 
congruences (3), 

ffl2 =gni2-922 = (9V92>}H - (-Vn>. (mod/?). 
g^ belongs to the exponent n^ (mod/?) and n^ > (12, so r>2 must be an odd number and#"2 = - 1 (mod/?). In 
this case^^"2 E= 1 (mod/?) and from this follows that/?^ is a divisor of 2ri2, But2n2 < 2nlr so/?^ - 2n2 and 

(4) ^ = $ r f w * = - 1 (mod/?). 

According to congruences (3) and (4) and Lemma 3: 

9fll ^'Fni'9i+'Fnv-i=^ (mod/?) 

922 = Fnrg2 + Fnx_1 = 1 (mod/?) 

and from this we get, as above, using Lemma 2: ffZ = 0 (mod/?) and so by reason of Lemma \rif is divisible 
by a(p). Thus a(p) <n^ < / ? - 1 which proves the second part of Theorem 2. 

Theorem 3 is true in the case p = 5 (see [1]), therefore we can suppose further on that/? £ 5. Let it be now 
a(p) =p - 1. In this case, by reason of Theorem 1, the congruence (1) is solvable. There is exactly one primi-
tive root (mod/?) between the two roots because otherwise a(p) </? - 1 would follow according to Theorem 2. 
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And conversely, if congruence (1) is solvable, one pf the roots is primitive and the other is not (mod/?), that is 
nl=P ~ h then it follows from the foregoing that n£ = (p - 1)/2 and n£ is an odd number. Let us suppose 
that a(p) <p - 7 as opposed to Theorem 3 and let(7 denote the least common multiple of/?2 and alp), q is di-
visible by ri2 and a(p) therefore 

7 ^92 = F
q«g2 + Fq_1 = Fq_t (mod/?) 

(becausep is a divisor of Fq according to Lemma 1). Using this congruence we get 

Q\ ^Fq'91+Fq-i = Fq,i = 1 (mod/?). 
From this follows q = p - / because /?2 and a(p) are divisors of/7 - / and5^ is a primitive root (mod/7). But 
q = p - / is an even number and ri2 is odd, therefore a(p) is an even number. 

N. N. Vorobev proved that for every natural number/? F%+1 = Fn-Fn+2 + (-1)n ( [5 ] , p. 11). Let us use this 
equation for the case n = a(p) - 7, it derives 

Fa(P)-l-Fa(p)+l- F2
a(p) + (-^(P)-

But, on the one hand, a(p) is an even number, on the other hand, 
Fa(p)+1 = Fa(p) + Fa(py1 = Fa(pyt (mod/?), 

so Fa, yi = 1 (mod/?). From this Fa(py1 = —1 (mod p) follows because in the case Fa(v)-l = 1 (mod/?) 
gi cannot be a primitive root (mod p) by reason of 

(5) gdi(p) = Fafpygt+Fafpyt = F a(pyt = 1 (mod/?) 

and the condition a(p) </? - 1. From the latter it follows that, similarly to (5), 

g*/p) - - 1 (mod/?). 

Buigi 's a primitive root (mod/?) and a(p) <p - 7 therefore a(p) = (p - 1)/2 = 112. However,a(p) = n2 is im-
possible, for alp) is even and /?^ is an odd number, so the condition alp) < p - / is impossible. Then alp) = 
p - 7, which completes the proof of Theorem 3. 

The reverse of Theorem 2 follows from Theorem 3 as well: If the congruencex =x + 7 (mod/7) is solvable 
and a(p) <p - 1, then both roots are primitive (mod/?) or neither of them is primitive. The point is that in this 
case, by reason of Theorem 3, there cannot be exactly one primitive root. 
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