BINARY SEQUENCES WITHOUT ISOLATED ONES

FEB. 1978

REFERENCES

1. Murray Edelberg, Solutions to Problems in 2, McGraw-Hill, 1968, p. 74.

2. C.L.Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, 1968, Problem 4-4, p. 119.

3. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973, p. 59.

ON THE EQUALITY OF PERIODS OF DIFFERENT MODULI IN THE FIBONACCI SEQUENCE

JAMES E. DESMOND Pensacola Junior College, Pensacola, Florida 32504

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let s(m) denote the period of F_n modulo m and let f(m) denote the rank of apparition of m in the Fibonacci sequence.

Let p be an arbitrary prime. Wall [2, p. 528] makes the following remark: "The most perplexing problem we have met in this study concerns the hypothesis $s(p^2) \neq s(p)$. We have run a test on a digital computer which shows that $s(p^2) \neq s(p)$ for all p up to 10,000; however, we cannot yet prove that $s(p^2) = s(p)$ is impossible. The question is closely related to another one, "can a number x have the same order mod p and mod p^2 ?," for which rare cases give an affirmative answer (e.g., x = 3, p = 11; x = 2, p = 1093); hence, one might conjecture that equality may hold for some exceptional p."

Based on Ward's Last Theorem [3, p. 205] we shall give necessary and sufficient conditions for $s(\rho^2) = s(\rho)$. From Robinson [4, p. 30] we have for m, n > 0

(1)
$$F_{n+r} \equiv F_r \pmod{m}$$
 for all integers r if and only if $s(m) \mid n$.

If m,n > 0 and $m \mid n$, then $F_{s(n)+r} \equiv F_r \pmod{m}$ for all r. Therefore by (1), $s(m) \mid s(n)$. So we have for m,n > 0(2) $m \mid n$ implies $s(m) \mid s(n)$.

It is easily verified that for all integers n

$$F_{2n+1} = (-1)^{n+1} + F_{n+1}L_n$$

From Theorem 1 of [1, p. 39] we have that s(m) is even if m > 2.

An equivalent form of the following theorem can be found in Vinson [1, p. 42].

Theorem 1. We have

i) s(m) = 4f(m) if and only if m > 2 and f(m) is odd.

ii) s(m) = f(m) if and only if m = 1 or 2 and s(m)/2 is odd.

iii) s(m) = 2f(m) if and only if f(m) is even and s(m)/2 is even.

To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following:

Lemma. m = 1 or 2 or s(m)/2 is odd if and only if 8 n and 2|f(p) but 4 f(p) for every odd prime, p, which divides m.

Proof. Let m = 1 or 2 or s(m)/2 be odd. If m = 1 or 2, then the conclusion is clear. So we may assume that m > 2 and s(m)/2 is odd. Suppose 8 | m. Then by (2), 12 = s(8) | s(m). Therefore s(m)/2 is even, a contradiction. Hence 8 | m.

Let p be any odd prime which divides m. From [1, p. 37] and (2), f(p)|s(p)|s(m). Therefore $4 \notin f(p)$. Suppose $2 \notin f(p)$. Then by Theorem 1 of [1, p. 39] and (2), we have 4f(p) = s(p)|s(m), a contradiction. Thus 2|f(p).

Conversely, let 8 m and 2 f(p) but 4 f(p) for every odd prime, p, which divides m. Let p be any odd prime which divides m and let e be any positive integer. From [1, p. 40] we have that f(p) and $f(p^e)$ are divisible by the same power of 2. Therefore $2|f(p^e)$ and $4\int f(p^e)$. Then since

FEB. 1978

ON THE EQUALITY OF PERIODS OF DIFFERENT MODULI IN THE FIBONACCI SEQUENCE

$$p^{e} | F_{f(p^{e})} = F_{f(p^{e})/2} L_{f(p^{e})/2}$$

and $p^{e} \not\mid F_{f(p^{e})/2}$ and $(F_{n}, L_{n}) = d \le 2 < p$ for all integers n , we have $p^{e} | L_{f(p^{e})/2}$. So by (3),

$$F_{f(p^e)+1} \equiv (-1)^{(f(p^e)/2)+1} = 1 \pmod{p^e}.$$

Therefore by definition, $f(p^e) = s(p^e)$.

Now, suppose that m > 2 and s(m)/2 is even. Let *m* have the prime factorization $m = 2^a p_1^{a_1} \cdots p_r^{a_r}$ with $a \ge 0$. Then by [1, p. 41]

$$s(m) = \text{l.c.m.} \{s(2^a), s(p_i^{a_i})\}$$

Then 4|s(m)| implies $4|s(2^a)$ or $4|s(p_j^{aj})$ for some *j* such that $1 \le j \le r$. If $4|s(2^a)$, then $a \ge 3$. Thus 8|m, a contra-

diction. If $\tilde{4}|s(p_i^{a_j}) = f(p_i^{a_j})$, then we have another contradiction. Therefore s(m)/2 is odd or m = 1 or 2.

Various relationships of equality between integral multiples of s(m), f(m), s(t) and f(t) for arbitrary positive integers m and t can be obtained as corollaries to Theorem 1. We mention only the following:

Corollary 1. If m > 2 and t > 2 and

i) *s(m)/2* and *s(t)/2* are both odd, or

ii) f(m) and f(t) are both odd, or

iii) s(m)/2, s(t)/2, f(m) and f(t) are all even,

then s(m) = s(t) if and only if f(m) = f(t).

Theorem 2. Let m and t be positive integers such that $m |L_{f(m)/2}$ if f(m) is even and $t |L_{f(t)/2}$ if f(t) is even. Then s(m) = s(t) if and only if f(m) = f(t).

Proof. Let s(m) = s(t). We have m = 1 iff t = 1 and m = 2 iff t = 2, so we may assume that m > 2 and t > 2. By Corollary 1, we need only consider the case; s(m)/2 = s(t)/2 is even and f(m) and f(t) have different parity, say f(m) is odd and f(t) is even. Then by Theorem 1, 4f(m) = s(m) = s(t) = 2f(t). Therefore f(t)/2 = f(m) is odd. Since f(t) is even we have by hypothesis that $t | L_{f(t)}/2$. Thus by (3),

$$F_{f(t)+1} \equiv (-1)^{(f(t)/2)+1} \equiv 1 \pmod{t}$$
.

But $t | F_{f(t)}$ and f(t) < s(t). This contradicts the definition of s(t). Therefore the case under consideration cannot occur. Conversely, let f(m) = f(t). As before we may assume that m > 2 and t > 2. By Corollary 1, we need only consider the case; f(m) = f(t) is even and s(m)/2 and s(t)/2 have different parity, say s(m)/2 is odd and s(t)/2 is even. Then by

$$2s(m) = 2f(m) = 2f(t) = s(t)$$
.

Therefore f(t)/2 is odd. Since f(t) is even we have $t | L_{f(t)/2}$. Thus by (3), $F_{f(t)+1} \equiv 1 \pmod{t}$. But $t | F_{f(t)}$ and f(t) < s(t). This is a contradiction and therefore the case under consideration cannot occur.

Corollary 2. Let p and q be arbitrary odd primes and e and a be arbitrary positive integers. Then $s(p^e) = s(q^a)$ if and only if $f(p^e) = f(q^a)$.

Proof. By Theorem 2 we need only show that if $f(p^e)$ is even then $p^e | L_{f(p^e)/2}$. We have

$$F_{f(p^e)} = F_{f(p^e)/2} L_{f(p^e)/2} \text{ and } p^e \not\mid F_{f(p^e)/2} \text{ and } (F_{f(p^e)/2}, L_{f(p^e)/2} = d \le 2 < p.$$

Thus $p^e \mid L_{f(p^e)/2}$.

Corollary 3. Let $\phi_n(x) = x + x^2/2 + \dots + x^n/n$, and let $k(x) = k_p(x) = (x^{p-1} - 1)/p$, where p is an odd prime greater than 5. Then $s(p^2) = s(p)$ if and only if $\phi_{(p-1)/2}(5/9) = 2k(3/2)$ (mod p).

[Continued on page 96.]

Theorem 1,