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Hence, t must be even and Lr = s . Substituting this result in (5), we obtain: sLt- s = 2, which implies s|-?, 
and sos= 1 or 2. 

SUBCASE A : s=l 

Thus, Lr = 12 = 1, and r = 1. Thus, by (2),F1 = 1 = Ft. Since t must be even, thus t = 2. Hence, (1,1,2) is 
another possible solution. Since 

-L{(1+ar-(7 + tVn) = -L{a
2n-(32n} = F2n = 1nF2n, 

thus (1,1,2) is a valid solution, the only one yielded by this subcase. 

SUBCASE B:s = 2 

Then Lr = 22 = 4, so r = 3. Thus, by (2), F3 = 2 = 2Ft. As in Subcase A above, t = 2. This yields the pos-
sible solution (3,2,2). Now 

(1 + a3) = 2a + 2 = 2a2
 ; 

similarly, (1 + f$3) = 2(32, Hence, 

-±{(t + a3)n-(1 + P3)n}=.-&r(a2n-P2n) = 2hF2n, 

which shows that (3,2,2) is indeed a valid solution, the only one yielded by this subcase. 
Therefore, aM solutions (r,s,t) of the desired identity are given by (7), and also by (1,1,2) and (3,2,2). 

Also solved by the Proposer, 
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[Continued from page 87.] 

Proof. From Corollary 2 and [4, p. 205] we have s(p2) = s(p) if and only if f(p2) = f(p) if and only if 

<t>(P~i)i2<5/9) ^2k(3/2) (mod/7). 
From Wall's remark we note that <p(p_1)i2(5/9)£2k(3/2) (mod/?) for all primes/7 such that 5 <p < 10,000. 
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