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GEOMETRIC RECURRENCE RELATION 

LEONARD E. FULLER 
Kansas State University, Manhattan KA 66502 

1. INTRODUCTION 

In a previous paper [1], we considered p, s sequences {Uy} and obtained 
explicit formulations for the general term in powers of r and s. We noted 2 
special sequences iGy) and {Mk}. These are sequences that specialize to the 
Fibonacci and Lucas sequences where r = s = 1. 

In this paper, we propose to consider the relationship between r,s re-
currence relations and geometric sequences. We give a necessary and suffi-
cient condition on r and s for the recurrence relation to be geometric. We 
conclude the section by showing how to write any geometric sequence as an r, 
s recurrence relation. 

In the final section, we briefly consider a special Fibonacci sequence. 
We give an explicit formulation for its general term. We are then able to 
note when it is a geometric sequence. 
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2. GEOMETRIC r,s SEQUENCES 

In the previous paper [1] we considered the special rss relations {Gk} 
and {Mk} which were characterized by the initial values GQ = 0, G± = 1, MQ = 
2, and M1 = P. We further specialize r and s so that the characteristic equa-
tion of the sequence has a multiple root A. We then have p = 2 A and s = -A2. 
It can be readily verified that the expression for the general terms are 

Gk = k^'1 and Mk = 2Xk . 

Note that the Mk sequence is geometric with ratio of A and first term 
of M0 = 2 . But the other sequence is not geometric. We shall develop the 
general conditions for which these two results are special cases. 

Before going to the main theorem, we will make a few observations. Con-
sider the general term of the P, s sequence {Uk}i 

un = rUn-i + sUn-il Uo> Ui arbitrary. 

If s = 0, this would be a geometric sequence starting with U1> Furthers if 
the initial values were such that U1 = rUQ, the sequence would be geometric 
with UQ as the first term. 

If P = 0, we have two geometric sequences with ratio s. One of these is 
the even indexed Uk with UQ as initial value. The other geometric sequence 
is the odd indexed Uk with U± as starting value. 

We shall call these two cases the trivial cases. In other words, an p, 
s relation for which PS = 0 is trivially geometric. 

There is a whole class of P,S sequences that are geometric only in this 
trivial case. These are the sequences, for which UQ = 0, for in this case 

U2 = rU1 + sU0 = rU19 

Us = rU2 + sU1 = (P2 + s)U1. 

Now this is geometric only if r2 + s = r 2. But this can only happen for s = 0. 
Included in this class is the {Gk} sequence. 

We shall assume in the rest of this section that UQ, P, and s are all 
nonzero. We are ready to state and prove our theorem. 

IhojQKm IA .' The p, s sequence {Uk} is geometric if and only if 

v + e U± . . /~2 ; / 
— - — = — , where e = ±Yr + 4s. 

Z U Q 

For convenience, we shall denote the ratio as m so that r + e = 2m or 
v - 2m - e. We find that 

e2 - r2 e2 - {2m - e)2 , . 
4 4 

We also need the result that 

vm + s = 2m2 - me + me - m2 = m2. 

From the expression for U2 and the assumption that U1 = mU0, we have 
U2 = rU1 + sUQ = r(mUQ) + sUQ = {vm + s)UQ = m2U0 = mU±. 

Assume t h a t Uk = mUk_1 fo r k = 2 , . . . , i - l . For 

Ui = rUi_1 + sUi_2 = r(mUi_2) + sUi_2 = (rm + s)Ui_2 = m2Ui_2 = mUi_1> 

Hence, the sequence is geometric with.UQ as first term and ratio of m. 
Conversely, assume {Uk} is geometric with ratio m so that Uk =mUk_1 for 

all k. Since 
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uk = rlIk-i + sUk-i = (wn + s)Uk_29 

and, by assumpt ion , 

Uk = mUk-l = m(mUk-2) = mlUk-2> 

it follows that vm + s = m2. This means that m is a solution of the equation 
9 2* i £2 2s "f" & 

x - vx - s = 0. The roots of this equation are — ~ — , so m = — - — . Fur-
ther, Ux = mUQ so JJ— = m. But these are the given equivalent conditions. 

In the proof, it was not necessary that r and s be integers. The results 
are then valid for a more general recurrence relation. In the corollary that 
follows, we note how any geometric sequence can be expressed as an r9s rela-
tion. 

CotiolZoJiy 2.1 '• The geometric sequence Uk = atk can be represented as the r, 
s sequence with UQ = a, U1 = at, r = 2t - A, s = t \ - t2 for any A. 

By the choice of UQ and U1, we have U1 = tU0. Also, 

e2 = v2 + 4s = kt2 - kt\ + A2 + kt\ - 4t2 = A2, 
so that 

v + e _ It - A + A _ 
2 " 2 " ̂  

Hence, by the theorem, this r, s sequence is geometric. 

3. A SPECIAL TRIBONACCI SEQUENCE 

There is a special Tribonacci sequence that is geometric under some con-
ditions. It can be verified that the sequence 

Tn = rTn_1 + sTn_2 - rsTn_3; TQ, T±, T2 arbitrary 

has for a solution 
k 

J-0 

J-0 

The roots of the characteristic equation of the sequence are p, ±fs. In case 
2^ - sTQ = 0 , we see that the even-indexed terms form a geometric sequence 
with ratio s and initial value TQ. Note that the condition imposed has T2 = 
sT0. The odd-indexed terms also form a geometric sequence with ratio s and 
initial value T±. 

We have another important special case to be noted. If T0 = T± = 0 , we 
do not need to differentiate between even-and odd-indexed terms. We have for 
solution 

M 
3=0 

if T2 = 1, we have represented the restricted partitions of m - 2 as a sum of 
Qn - 2 - 2j) lfs and (j) 2fs. 
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1. STATEMENT OF THE PROBLEM 

Recently5 Buschman [1], Horadam [2], and Waddill [3] considered proper-
ties of the recurrence relation 

V*. m rUk-i + sUk_2 
where rs s are nonnegative integers. Buschman and Horadam gave representa-
tions for Uk in powers of r and e = (r2 + 4s)1 . In this paper we give them 
in powers of r and s. We write the Kn of Waddill as Gk, It is a generaliza-
tion of the Fibonacci sequence. We also consider a sequence {Mk} that is a 
generalization of the Lucas sequence. 

For the {Gk} and {Mk} sequences9 we obtain two representations for their 
general terms. From this9 we move to a representation for the general term 
of the basic sequence. A computer program has been written that gives this 
term for specified values of the parameters. 

In this paper we use some standard notation. We start by defining 

e
2 = p2 + 4ss 

where e could be irrational. We also need to define 

a = (P + e)/2 and 3 = (r - e)/2. 

In other words, a and 3 are solutions of the quadratic equation 

We can easily show that a + $ = r 5 a - $ = e 9 and a(3 = -s. 

2. GENERALIZATIONS OF THE FIBONACCI AND LUCAS SEQUENCES 

Using the a and 3 given in the first section9 we can define two special 
p5 s sequences. These are given by 

= ak - 3 (g + 0 ) M = ak + 3ke 

It is easy to verify that 

G0 = 0, (?x = 1, G2 = P 9 Gs = r2 + s9 Gk = rs + 2rs; 

M0 = 2S M1 = z>s M2 = r2 + 2ss M3 = r3 + 3rs, 

Mh = vh + 4r2s + 2s2; 

and that they satisfy the basic r9s recurrence relation; i.e.9 


