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1.  INTRODUCTION

A kth-order divisibility sequence is introduced in Hall [3] as a sequence

of rational integers Ups Uys Uys «-es Uys ... satisfying a linear recurrence
relation
(L Unele = Al T 000 T Gy,

where the a's are rational integers, and u, divides u, whenever m divides n,
for all positive integers m and #.

Some examples follow: O, 1, 2, 4, 8, ... is a first-order divisibility
sequence, while 0, 1, 2, 3, 4, ... is a second-order divisibility sequence.
Another second-order divisibility sequence is the Fibonacci sequence

0, 1,1, 2, 3, 5, 8, ...,
whole recurrence relation is
Upsp = Uppp + Up.
If this recurrence relation is generalized to
Unsa = TUpyy T Yln,

where & and y are indeterminates, the sequence resulting from the initial
terms u, = 0 and u; = 1 is the sequence of Fibonacci polynomials. Like the
numerical Fibonacci sequence, these polynomials satisfy the divisibility
property umlun (in' the ring I[x, y] of polynomials in x and y with integer
coefficients) whenever m|n. Unlike the Fibonacci numbers, however, the poly-
nomial is irreducible (in I[x, y]) whenever the index m is irreducible in I.
Thus, the divisibility properties of the more general sequence differ from
those of the numerical sequence.

This example and others lead us to extend the coverage of the term kth-
order divisibility sequence to include sequences for which any number of the
a's in (1) and any number of the initial terms uy, U;, ..., U;_, are indeter-
minates. The resulting sequence may then be a sequence of integers, but it
may, instead, be a sequence of polynomials in-one or more indeterminates x,,

.» Tp. In this case, our discussion of divisibility properties refers to
arithmetic in the ring I[xl, cees Xpl.

When a divisibility sequence is to be discussed without reference to its
recurrence order, we call it a linear divisibility sequence. Thus, a dis-
tinction is made between the sequences at hand and nonlinear divisibility
sequences, such as the elliptic divisibility sequences studied by Ward [7],
[8]. ;

The only known linear divisibility sequences are resultant sequences and
their divisors, as defined below. Our purpose in this paper is to discuss
generating functions of such sequences. Suppose

p . q :
x@) = I1 ¢ -2 and 1) = [T (2 -y
i= Jj=1

are polynomials with integer coefficients; here, any number of the roots x;
and y; may be indeterminates. A resultant sequence {u,}, ©» =0, 1, ..., is
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a sequence of the form

¢ p x-yr
(2) u, =11 11 S
"1 i=r % T Y
Thus, u, = Rn/Rl, where R, = R,(X, Y) is the resultant of the polynomials
p q
[Tt-2p and I -ym.
i=1 Jj=1 J

A divisor of a resultant sequence {u,} is a linear divisibility sequence {v,},
n=20, 1, ..., such that vnlun for n = 1, 2,

Ward proved in [5] that every resultant sequence is a linear divisibility
sequence, and conjectured repeatedly that every linear divisibility sequence
is a divisor of a resultant sequence. No proof of this conjecture seems to be
known or imminent, even in the case that all the roots are indeterminates!

Before continuing directly toward an investigation of generating func-
tions, we pose another problem, closely related to Ward's conjecture. For
(not necessarily distinct) algebraic integers £ and ¢, let F be the smallest
normal field containing both & and . Define

(3) = M55 n=0,1, ..,
S

the product being taken over all automotphisms S of F. Then the terms v, are
rational integers and the sequence {v,} a linear divisibility sequence. We
call this the linear divisibility sequence belonging to &, . Suppose now
that {u,} is a numerical resultant sequence and that {v,} is adivisor of {u,}.
Suppose, further, that u, = v, = 1 and {v,} has no divisors of its own. except
(0, 1, 1, ...) and {v,}. Must {v,} be a linear divisibility sequence belong-
ing to some pair of algebraic integers appearing in (2)?

2. RECIPROCAL POLYNOMIALS
Suppose 4 # 0. A polynomial
H(E) = hy + hyt + -+ + hy t2F

of even degree 2k is.an A-reciprocal polynomial of the first kind if

h

and an A-reciprocal polynomial of the second kind if

kg = A¥=9,  for g =0, 1, ..., k,

hox-q = =A*"%hg  for q =0, 1, ..., k.

In both cases, the roots of H(f) occur in pairs whose product is 4; converse-
ly, any polynomial with this property is an A-reciprocal polynomial. A dis-
cussion may be found in Burnside and Panton [2, pp. 63-64].

Suppose

2k o
F=f@®) =D £t and g=g@) = Zgjtj,
i=0 =
and write
9ofg ~ f gy for max{a, B} < 2k
[O"s B] =

0 otherwise.
Clearly [B, o] = -[a, B].
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Lemma Ta: Suppose

0 <o < 2k and 0 < B < 2k.

If f and g are A-reciprocal

[a, B]
Proo{: o, Bl
Theonem la: Suppose

F(t)
_and

G(t)

~are polynomials of degree 2k
H(t) = F(£)G' () — G(E)F' () = hy + hyt + =+« + k. t**" %,

polynomials of the first kind, then
= A%*B2K ok~ a, 2k - B].

= dufy = g

= gk+qjl+q’_ j;+qgk+q’

A"gk_qujfk_q, - Aqf]'(_qu'gk_q,
ATk - q, k- q']

= A%*B-2k ok — a, 2k - B].

I

k
fo+ it +ooee + ft°
gy * gt cer +g
> 0. Let

4k -1

Suppose F(t) and G(%). are A-reciprocal polynomials of the first kind:

q - 29 —
f%+q =4, ?nd Jriq =4 Ir_q for ¢ =0, 1, ..., k.
Then f,,_, = h,_.; = 0, and H(t) is an A-reciprocal polynomial of the second

kind:

— q _
hzk—1+q = ANy 1 g0 4=0, 1, ..., 2@ -1,
Proog:
2 AVEI 2! . w ko1 | '
H(t) = fiti Z (z + l)gi.;.lti _ <Zgit1>< E(/L + l)fi+1tz>
=0 =0 i=0 =0

sk-1 |

- Ztﬂi(i+ Dz +1, §-4l.

J=0 =0

Thus, for g = 0, 1, ..., 2k -= 1, we find, after some simplification,

8
Mox-1-q = 9,2k = q - 20)[2k - q - 1, i].
=0

where

s = (2k - g - 2)/2 for even g and (2k - ¢

On the other hand,

hzk—1+q

2k
= Y (g + 2k - ©)lq + 2k

i

2k
(g + 2k - ©)[q + 2k

i

1)/2 for odd g.

7, 1]

=0

1, 1]
=q .
(continued)
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2k -q
D@k - D2k -1, g+ 1]

=0

STk - q - 2)[2K -, q + i

7=0

i

i

s
A7) 2k - q - 29)[2k - q - %, 1],

=0
by Lemma la, but this equals —Aqhzk_l_q, as desired. In particular, for g =
0, we find h,,_, = ~hy _,, so that h,,_,=0. That %,,_, = 0 follows directly
from the definition of H(%).
Lemma 1b: Suppose 0 < o < 2k and 0 < B < 2k. Suppose f and g satisfy

Trng = Aqfk—q for g = -k, ..., 0, ..., k.
Then

[o, B] = —A%*B~2%[2k — o, 2k - B].
Proof: lo, Bl =g, fy - fu9s
Ierafiea ™ TaraTisq
= Aq+q(fk-q9k-q'" gk-qﬁ-q')
= A% B2k 0% _ q, 2k - B].

Theorem 1b: Suppose F(t), G(t), and H(t) are as in Theorem la, but that for
some 4 # 0,

qp
Irsq = A Tk-q forg =-k, ..., 0, ..., k.

Then hqk—l = 0, and H(¢) is an A-reciprocal polynomial of the first kind:
7
Pok-1+q = A hpg_1.q forgq=20,1, ..., 2k - 1.

Proog: The proof is so similar to that of Theorem la that it is omitted.

3. GENERATING FUNCTIONS

S

Suppose m > 1 and Xy, «v.5 Xps Y15 -0 Y, are (not necessarily distinct)
indeterminates. Write

X&) = [T -x) =t" =X+ .0+ (-D"X,,
=1
m .

y@) = [Tt -y,) =t" - 0t" ™+ oo + (-D"Y,,
i=1

s -1 o “Zyi 5 _Zyilyiz 5 ..yl cee Y
0 = 3 1 - s 2 - D ) m =TT T e
x, Ly Ty Ly eee Lp

-2 0-2)

]
5><
PN
H
[ |H

m
Then [I (x; - yi)
=1

[}
S
3
—
—
1
Q
[
+
Q
N
i
+
—~
1
—
S
3
Q
El

(continued)
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X, + X0, + e +Xo0 - X0+ -+ +X.0,), odd m

(4) =
Xy + X0y + oo + X0, - (X0, + --« + X,0,_,), even m.

The right side of (4) consists of 2™ terms of the form
tyilyiz oo Y
Let P be the set of those terms having positive coefficient (i.e., an even

number of y's) and N the set of those having negative coefficient. 1In the
set P UN, define a mapping

. X, o L. &
Tr T o

qa(yilyiz e Yg, %o c Xy ) = Ys.., S Yy T T, e Ty

If m is odd, ¢ is a one-to-one correspondence between P and N; if m is even,
¢ defines a one-to-one correspondence between P and P, and also between N and
N. For each element z of P UWN, we have 2¢(2) = X,Y,.

At this point, we introduce some more notation. Write

T = (Lys eees Lo Y = (Ygs oees ym),<A = (XmOO, XO1s eons X0 s

Uy, y) = ji:(xf -yH,n=0,1, ...,
=1
(5) Folws y) = 310Gy ) + Uylms -] = 2v7
YEP
6 9@ y) =2, (e y) = U (2, -] =3 6"
YeN

We index the y's and §'s in any order, as
Yis Ygs eens Yo and Sy G,y eues S
where 2k = 2"°%,

Theorem 2: The sequence {u,} defined by

b ey
unzz—J—z ——r——,mzl;n=0,l,---,
1 i:lxi y‘l;

is a 2™-order linear divisibility sequence with generating function

t 6@ _FI@)] _ _tH)
(7) U, L)y T F@® ] T F@®GE”’

where F(t)G(¢t) is an X,Y,-reciprocal polynomial of the first kind, lying in
I[A, t] with degree 2™ in ¢, and H(¢) is an X,Y,~reciprocal polynomial of the
first or second kind, depending on whether m is even or odd, lying in I[A, ]
with degree 2™ - 2 in t.

Proof: Equation (5) shows that the sum

s, = ED'Y”

YeP

is a binary symmetric function (as in Bdcher [l, p. 255]) of the pairs

(xlp yl)B LECICRS ) (xma ym)s
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namely X,0,, X,0,5 ..., X,0,. Since these (ordinary) homogeneous power sums
s, of the Y's thus lie in I[A], the (ordinary) elementary symmetric functions
of the Yy's also lie in I[A]. The same is true for the elementary symmetric
functions of the §'s. Therefore, the polynomials ’

2k 2k
(8) Fit) = [TQ - Y;: 1) and G(t) = I] (1 - §;¢)
i=1 J=1

lie in I[A, t].

Suppose m is even. Then F(¢) 1is an X,Y,-reciprocal polynomial of the
first kind, since each vy, is accompanied in F(¢) by oCy;) = XthY;l. The same
is true for G(Z). On the other hand, if m is odd, then each y; in F(£) equals
XnYn$(87) = XY, vi* for some §; in G(¢), and conversely for each §; in G(%).
Thus, F(t) and G(t) are related as in Theorem lb. In both cases, even m and
odd m, the product F(t)G(t) is therefore an X,Y, -reciprocal polynomial of the
first kind.

Since {F,(z, y)} and {Qn(x, y)} are sequences of power sums, we have

n=0

DU, Pt = PG (@, Pt - 3 gz, Pt = —i(g) - _g(g),
n=0 n=0

and (7) follows. Theorems la and 1b now apply to the polynomial

- 1 ' _ '
H(t) = U, (x> y)[F(t)G &) - GOF' ()],
and the proof of Theorem 2 is finished.
In Theorem 2, the coefficients of the polynomials H(t) and F(t)G(t) lie
in I[A]; that is, they themselves are polynomials in the indeterminates Xm0y s
Xy01s eevs XpOp = Y,. Of special interest is the possibility that these co-
efficients lie, a fortiori, in the ring

T% = I[X1, vovs Xy Y1 vnns 7]

[or a suitable modification of this ring, as in Theorem 2a below; just so that
the coefficients in question are polynomials in the coefficients of the un-
derlying polynomials X(t) and Y(¢)]. 1If repetition of x;'s and y;'s is
allowed, then all these coefficients can possibly lie in I*. We investigate
two such cases in the next section: resultant sequences and certain divisors
of resultant sequences which we call Vandermonde sequences. Under the addi-
tional hypothesis X,=Y,=1, we are able to prove another symmetric property
of H(t) and F(£)G(t): as functions of (Xy, ..., Xp_15 Y15 «vss Yp_q1)s each of
their coefficients remains unaltered under the substitution

X; > Xm-is -Yi > Y.

m?*

is T =1, (o.ym= 1.

L. RESULTANT SEQUENCES AND VANDERMONDE SEQUENCES
Theonem 2a: - Suppose p > 1, g > 1, and p + q > 3. Suppose’
q : i
(2) u, = Il [l ——%, n=0,1, ...,
where

p ' 0
(9 X(t) = JI (¢ - xy) = tP = xytP™t + X,tP72 - oo + (-1)PXp,
i=1
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q
(10) Y(t) = JI=I1 (¢ -y) =t -1t 47,7 -+ D7y,
and
T* = T[Xy, vees Xpy Yyu wuns Yol

Then, {u,} is a 2°%-order linear divisibility sequence with generating func-
‘tion

Tl  Fr@)| _  tH(®) ’

Ry| G(E) F(t) | ~ F(t)G(E)’
where

q P
By = I Il @@ - y))
Jj=1 =1

is the resultant of X(¢) and Y(¢t), F(t)G(t) is an XZY;Lreciprocal‘polynomial
of the first kind, lying in I*[¢] with degree 2P% in t, and H(t) is an XZY;—

reciprocal polynomial of the first or second kind, depending on whether p is
even or odd, lying in I*[t] with degree 277 - 2 in t.

Proog: Putm =pgq, o =x; foriq - q+1<k<ig; 7 =1, ..., p, and B =
y; for k=8%8q+34;3.2=0,1, ..., p=-1; 4 =1, .» q. Then, Theorem 2 ap-
plies, where the pairs (xy, yi) of Theorem 2 are the pairs (ay, By) of the
present discussion. All that remains to be seen is that the coefficients of
H(t)and F(t)G(t) lie in I* and that the dependence of H(t) for first or sec-
ond kind reciprocity rests on the parity of p alone.

For the latter, we refer to the proof of Theorem 2: Equation (5) shows
that for even p, eachy; occurs in F(¢) along with ¢(y;) =XgY5Ygl. This makes

F(t)znxXgY;—reciprocal polynomial of the first kind, and similarly for G(%¢).

For odd p, we find F(¢) and G(f) related as in Theorem 1b, and the argument
is finished as in the proof of Theorem 2.
Equation (5) also shows that the sum

Sn =Z v

YEP

is symmetric in %3, ..., &p and symmetric in y;, ..., Yqs since F,(x,y), where
(x, y) = (Qys «evs Oms Bys «ves Bp)s is a sum of two resultants, each symmet-
ric in ;, ..., Zp and symmetric in y;, ..., Y,. Thus, s, is a polynomial in
the elementary symmetric functions of x;, ..., Zp and of Yys +=+s Yg» namely,
the coefficients X;, ..., Xp and Y;, ..., ¥Y;. Each s, therefore lies in I%*,
so that the elementary symmetric functions of the y's also lie in I*. The
same is true for the elementary symmetric functions of the §'s. Therefore,
F(t), G(t), and H(t) all lie in I*[t].
' . . tH(t) . . .
‘ Iﬁggggm_ég: Suppose the generating function ?YESEZET in Theorem 2a is writ-
ten out as

E(hy + Iyt + oee + By ,t%7 %)

(1)
' Lk
wy + w,t + -0 + qut
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where k = 2°772, Then the coefficients %; and w;, regarded as functions of
Koo vves Xpy ¥ «s Y4, where X, = Y, =1, satisfy

p’ 0,
(12) hi(ly Xpqs wees Xou 1, 1, Yo gy ooey Yp, 1)
= (L, Xy ey Xpops 1, 1, ¥y, ey Yo, 1),
=0, 1, ..., 4k - 2,
(13) WLy Xy s wevs X5 1y 1, Yo gy veny ¥y, 1)

Y
w, (L, X,y ooy X L1, Yoy eees Y, 1),
i=0,1, ..., bk.

Proog: Write x = (21, ..., 2p) and ¥y = (Y15 ..., Yp), and consider the effect
of the operation of reciprocation,

x, »x;t, =1, 2, ..., p and yj+y;,j=1,2,“.,%

on the sequence {u,(x,y)} and its generating function. The series belonging
to this sequence is transformed into

(14) X;Yf[o +t' + u,(x, y)t'z + us(x’ y)t'3 + .07,

where t'! = t/Xng, and we may write its generating function as

: t(hy + hit + -+ + Rl %)
(15) s
wh F Wit + eee 0l

where the %/ and w] are functions of X,, ..., Xp, Yy, ..., Y5. To solve for
the 2] and w/, note that reciprocation transforms the polynomials (9) and (10)
into

-1)P 2 Py P
X, [X, - Xyt + X,t° = =+« + (1) Xt 1
and
('1)q[y - Yt 4+ Y % - oo + (-1)7,¢7]
Y, 0 1 27 q .
Therefore
X, X X Y Y
p p-1 0 q 0
(16) h; = hl(X_p’ Xp s oo z—’ Y—q" oo Yq‘)s 7 =0,1, . bk - 2
and
(17) Y i R X ), ;- 0, 1 4k
wi_wl Xp’ Xp s ’Xp, —Yq’ o ey -YC] s T = s H L] .

If we replace t by t' = t/Xng in (11) and multiply the resulting rational
function by X;Yf, the series expansion is (l14). Thus, (l11), as modified,

equals (15). Since the degrees of the denominators are equal and wé=zdo =1,
we equate denominators and we equate numerators. This gives equal coeffi-

cients: hé = h,; and wg = w;. Equations (16) and (17) now complete the proof
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of a more general set of equations than we set out to prove. Clearly, for
Xp =Y, =1,

these equations reduce to (12) and (13).

Theorem 2b: For p > 3, suppose

x? - xl
u, = I —i—:—gi, n=0, 1, ...,
where tei<jsp * J
P
(9) }]l(t - xy) = tP - X ePTh 4+ X tPT2 - e+ (=)7K,
and

Tk = I[Xy, «..s Xpl.

Then {u,} is a p!-order linear divisibility sequence with generating function

t [?’(t) F’(t)] LH(£)

V.G T F@® | T FmEd”

where
vy = I (x; - xj)s
1<i<j<p
F(t)G(t) is an Xg—l—reciprocal polynomial of the first kind, lying in I*[¢]
with degree p! in t, and H(t) is an X} '-reciprocal polynomial of the first
kind, lying in I*[?] with degree p! - 2 in t.

Proog: As is well known, V, is the Vandermonde determinant:

1 1 eee 1
xq Z, cee Xy
2 2 2 . .
x] x; - Ty _ (_1)k§:x;1x;2 . x;p’
p-1 p-1 p-1
Ty x5 x

1]

where {Z,, 2,5, ..., Zp} = {0, 1, ..., p = 1} = 9 and

ks =

{ 0 if o is an even permutation of 9

1 4if 0 is an odd permutation of J.

Half of these p! summands have k, = 0 and the other half, k, = 1. If p > 3,

then p!/2 is even, and each summand 2

with a summand X;’lz‘l, also with k, = 0; if 2z has k, = 1, so has Xg‘lz_l.

iy 42 ip . P
xtx % ... 2" with kg = 0 is matched

The situation is much the same as in the proof of Theorem 2, with one essen-
tial difference. Here, the functions XpOO, chl, ««.5 Xp0p, where for each
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7 it is understood that Y, is the x; appearing with x; in the product

H (xi - .'X:J)’

i<g
are not symmetric in Tys eees Tpe This is a consequence of the fact that V
is not symmetric in x,, ..., &p [unlike the discriminant Vi of X(t)]. We may
proceed by dealing directly with the symmetric quotients
z? - x?
L J

xi—x'j

un(x) =

rather than the asymmetric products [](x - x?): put

Tp@) = (@) + U, ()]
and

0,(&) = 2, @) = un-2)].

The proof for p > 3 now follows that of Theorems 2 and 2a so closely that we
omit further details.

Consider now the case p = 3: for 2 with k; =0, we have X%z'l with k =1,
and conversely. The polynomials

F(t) = (1 - xixzt)(l - xlxgt)(l - xéxat)
and

2 2 2
G(t) (1 - xlxst)(l - zy25t) (1 - x,25t)
are not covered by Theorems la and b, since they are of odd degree. Although
these theorems can easily be extended to odd-degree polynomials, we choose to
defer the case p = 3 to the third example in Section 5, where the generating
function tH(t) /F(t)G(t) is fully displayed.

Theorem 3b: Suppose the generating function tH(t)/F(t)G(t) in Theorem 2b is

written out as
tk‘z)

t(hy + byt + ==+ + hy _,

s

Wy + Wit + oo + Wtk

~where k = p!. Then the coefficients %; and w;, regarded as functions of X,
.s Xp (where Xy, = 1) satisfy

(127) hi(ly Xp_19 L) Xl’ 1) = hq:(]" Xl’ cees XP—l’ 1,
) 2 =0, 1, «o.y k-2,

and

(137 WLy Xy ys wees Ko 1) = 0;(1, Xy eues X, 1),

2=0,1, ..., k. ]
Proog: The proof is so similar to that of Theorem 3a that we omit it here.

L. REDUCTION OF RECURRENCE ORDER

The definition of kth-order divisibility sequence in terms of (1) does
not preclude a given kth-order sequence from being a jth-order sequence for
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some J < k. However, a linear recurrence sequence must be of some least re—

currence order, and so the following questions arise:

) 1. When are the recurrence orders of the sequences of §3, as reported,
already least possible?

2. When the recurrence order is reducible to a least value %, so that
the generating function tH(¢)/F(£)G(¢t) is reducible to a quotient
th(t)/f(£)g(t) whose denominator is a polynomial of degree k, then
what symmetric properties remain with this reduced generating func-
tion?

Clearly, the least recurrence order of a sequence is k if and only if the
polynomials %(%) and f(£)g(t) have no common linear factor.

First, we consider the possibilities for common linear factors in case

all the xi's and yj's are, as in §3, indeterminates. We can then use this
information in case some or all of the x;'s and yj's are algebraic integers.

Possibilities - for reduction of generating
gunctions 4in Theorems 2, Za, and 7b

1 H(t) has no linear factors in common with F(£)G(%).

2. F(t) and G(t) have a common linear factor.

3. F(t) or G(t) has a repeated linear factor.

4 H(t) has a linear factor in common with F(£)G(f) which is neither a
common linear factor of F(£) and G(t) nor a repeated linear factor
of F(t) or G(t).

For the general sequences of Theorem 2 and the Vandermonde sequences of
Theorem 2b, the second and third, possibilities clearly do not occur, since we
are dealing with distinct inteterminates. We conjecture that the fourth pos-
sibility does not occur for these sequences or for the resultant sequences,
either.

For the resultant sequences of Theorem 2a, the second possibility still
cannot occur, for, appealing to a's and R's as in the proof of Theorem 2a,
the linear divisors of F(¢) are all of the form 1 - BAt where B is a product
of an even number of B's, hence has even weight in the y-indeterminates; on
the other hand, the linear divisors of G(¢) all involve odd weights in the y-
indeterminates. )

However, for resultant sequences, the third possibility does occur.. It
would be difficult to obtain a general classification of occurrences of re-
peated linear factors within F(£) or G(¢), but to acquire some knowledge of
such occurrence, we put p = g = 4 and seek repeated linear factors: as in .
the proof of Theorem 2a, we have

Xy =0y =0 =03 = 0y Y1 =By = Bs = By = B13
Ly, = 0 = 0g = Q; = 04 Yo, = By = Bg = By = Byy
Lg = Og = O35 = Q3 T CQyy Yy = B3 = By = B11 = Bys
Ly = Qg = Oy = Qg5 = Ogg Yy = By = Bg = By, = By

The linear factor 1 - y,y,%ixxjx/t occurs both as
I - BBg0,0,0,050, «v. O T
and as

1 - Bzﬁsqluaukue cee Qg T

To account for such repetitions, consider the 4 x 4 rectangular array:
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yl yz y3 yq

x 1 2 3 4

5 6 7 8

x 9 10 11 12

©, | 13 14 15 16

The sub-array involving 1,2, 5, 6 corresponds in an obvious way to the equa-
tions B B, = B,B; and a,0, = 0,0,. Any such occurrence of B;B; = 8,8, and
Q0 = Oy0y, where 7 # 2, corresponds to a repeated linear factor of F(%)
with y-weight 2. The array contains 36 rectangular sub-arrays, each corre-
sponding to a repeated linear factor. A moment's reflection now indicates
that there are many more than 36 repeated linear factors of G(Z) having y-
weight 3, and so on. Since F'(£) and F(t) have a common linear factor when-
ever F(t) has a repeated linear factor [or the same for G'(¢) and G(¢)], and
since
H@) = [F@G' () - GOIF'()]/R,

we conclude that the order of recurrence 277

reduced considerably.

Since H(t) and F(%)G(t) are P-reciprocal polynomials for some P, each
linear factor 1 - rt of H(t) occurs with 1 — Pr™ ‘%, and the same pairing oc—
curs in F(t)G(t). For the remainder of this section, we restrict our atten-
tion to all the sequences considered in §3 except the Vandermonde sequence in
the special case p =3. Therefore, in the cases under consideration not only
the degree of the denominator, but also that of the numerator, of each gen-
erating function, before any possible reductions, is an even positive integer.
Accordingly, in the case 1 - vt = 1 - Pr~'t, this factor occurs an even number
of times. This remains true in the cases under consideration if any number
of the symbols x;, ..., y;, ... represent algebraic integers rather than in-
determinates. We summarize and extend these considerations in the following
two theorems.

reported in Theorem 2a can be

Theonem 4a: For the sequences {u,} of Theorem 2, Theorem 2a, and Theorem 2b
(except for p = 3), wherein any number of the x;'s and y;'s may be algebraic
integers, the least recurrence order k is an even positive integer. The gen-
erating function th(¢)/f(£)g(t), where H(t) and F(¢)G(t) are P-reciprocal
polynomials, reduces, by cancellation of common linear factors, to a rational
function th(¢)/f(t)g(t), where h(t)|H(t), f(t)]F(t), and,g(t)[G(t). Moreover,
f(t)g(t) is a P-reciprocal polynomial with degree k in ¢, and h(¢) is a P-
reciprocal polynomial with degree kK - 2 in ¢. The coefficients of these two
polynomials lie in I[A] for the general sequences of Theorem 2, and in I* for
the resultant and Vandermonde sequences of Theorems 2a and 2b.

Proof: All these claims follow easily from the cited theorems, together with
the fact that each linear factor 1 - vt of H(t) cancels along with another
factor, 1 - Pr~'t. After all such pairs cancel, the remaining linear factors
of h(t) and of f(£)g(t) still occur in pairs of the form 1 - rt, 1 - Prtt,
so that we 'still have P-reciprocal polynomials.

Theorem 4b: The symmetry property for coefficients indicated by (12), (13),
(127), and (13') hold for the coefficients of the reduced polynomials h(¢)

and f(t)g(t) of Theorem 4a.
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Proof: The proof is so similar to that of Theorem 3a that we omit it here.

5. EXAMPLES

Exampfe 1: First, we write out the polynomials F(t), G(¢t), and H(t) which
appear in the generating function of the resultant sequence obtained from

X(t) = (t - x)(t -x,)(t - x,) =t -at? +bt —c and Y(t) = ¢ - d:
F(t) =1 = (¢ + ad®)t + d*(ac + bd?®)t? - ed*(b + d*)t3 + c2d5¢",
G(t) =1 -d + d*)et + d*(ac + bd®)t? - ed*(c + ad?)t® + c2d°t",

H(t) =1 - d*(ac + 3ed + bd*)t? + 2¢d®(c + bd + ad® + d%)¢3
- ed®(ac + 3ed + bd®)t* + 234°t°.

In accord with Theorems 2a and 3a, H(t) is a cda—reciprocal polynomial
of the first kind, and ¢ and b are interchangeable within each of the coeffi-
cients in case e¢=d=1. Similar observations hold for the product F(£)G(%).

If e=d=1 and a=b, then the resultant R = ¢ + ad® - (bd + d%) of X(%)
and Y(¢t) vanishes, and F(t) = G(¢) has the root 1 in common with H(¢). In this
case, the expression

(x? - 1") (e} - 1" Q" - 17)
(¢, - D(x, - 1A -1

formally equals
(x] - D) (x)} - 1)
(¢, - D(x, - 1)

n

which generates a sequence of recurrence order less than 8. Nevertheless,
this sequence is formally generated by tH(t)/F(t)G(t).
Putting —-a=b=c=d=1, we obtain an 8th-order divisibility sequence:

0, 1, 2, 1, 8, 11, 14, 34, 64, 109, 242,

Example 2: Here we examine a divisor of a resultant sequence. Suppose

F(t) = (t —x)(t -=x,) =t> -at - b
and :
G(E) = (£ -y (& -y, =t - ct - d.
Let
Ap = (-1)"@" +d™ and A = (a® + 4b)(c® + 4d),
and let B -
Ln=xf+x,f, Ln=y’lz+yg
and oo Wi
F, =07 F, =——,n =20, 1,
ToE T, oY, T Y,

Each of the latter four expressions is a polynomial in a and b or ¢ and d.
The polynomials L, = L,(a,b) and I, (¢, d) are often called Lucas polynomials,
and the polynomials F, = F,(a,b) and F, = F,(c,d) are the Fibonacci polyno-
mials mentioned in §1.

The resultant R,(F, G) of the polynomials F,(t) = (¢t - xf) (t - x;‘) and
G, (t) = (¢t - y;l) (t - y;) can be written as
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R,(a, b, ¢, d) = +@,E, - 24, + M F,) (T, - 24, - ALF,),

since _ .
L,L, - 24, + AF,F, n

~2(zy = ) (e - y])

and _ .
L,L, - 2A, - AF,F, = =2(z] - y) (&) - y)).

Thus, if (a? + 4b)(c? + 4d) is a perfect square, the sequence with nth term
LnLn - ZAVI + AF?ZFVZ

v, =

L,L, - 24, + AF|F,
is a divisor of the resultant sequence
{u,} = {R,/R,}.
Writing D = x,y, + x,y,, we find that the quotient

(18) . 1 - pde?
1+ (B+d-D¢t+ (2bd - bD - dD)t? + bd(b + d - D)t® + b2d%¢"

is a generating function for. the sequence {v,}.

If we put D =2, -b - d =y, and -bd = 2, then the sequence {v,} is the
same as the sequence {,(x, y, 2)} discussed in detail in [4]. Thisis a 4th-
order divisibility sequence (for which 4 is the least possible order), and as
a polynomial in x, we find for n > 2 the following factorization in terms of
linear factors:

n-1
L.z, 20, -0% - B%) = [ (x - 20 cos 2kmw/n - 2B sin 2km/n).
k=0

It seems likely that every 4th-order divisibility sequence with u, = 0 and
u, = 1 is generated by (18) for some choice of b,d, and D. We point out that
3rd-order divisibility sequences are characterized in Hall [3].

Exampfe 3: Here we examine a Vandermonde sequence. Let
@) = (- )@ =B -Y) =t - At2 + Bt - C.

The Vandermonde sequence whose nth term is

n o _ n - n o _
& B Lot -y" B Y", n=0,1, ...,
a - B a -y B -v

has a generating function

(19)

t[1 + 2Ct + C(3C - AB)t? + 203%¢% + C%¢"]
1+ (3C-AB)t+ [B3+ C(A®% - 54B+ 6C) 12+ C[B(2B% = A?B) + C(7C+ 24°% - 64B) ]¢3
+ C?[B3+ C(A% - 54B+ 60) 1t + C*(3C - AB)t° + C®¢®

The first six terms are as follows:
u, =0, wu, =1, wu, =A4B-C, u, =A’B*> -B®-cA®
u, = C* + 24°C% - 5ABC® + 2B3C + 34%B*C - 24"BC + A®B? - 24B*

us = -C* + A3C® + 8ABC® + B3C? + A“BC? - 154%B%C* - 34%B% - 34°B%C
+ AB“C + 843B3C + A®C? + A“B* + B®.
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For ¢ = 1, note that all the terms of the sequence are symmetric in 4 and B,
in accord with Theorem 3b.

As a special case, put 4% =x, B =0, and C = C. The generating func-
tion is then

t(C%E% + Ct + 1)2
(C?t2 + Ct + 1)% + Cx(Ct + 1)2¢?

and it is easily seen that the numerator and denominator have a common root
if and only if x = 0, in which case the sequence degenerates to a Fibonacci
sequence. Thus, except for x = 0, this Vandermonde sequence is of recurrence
order 6 and not of any lesser order.

For A% = x, B=0, C =1, the first nine terms are:
y = 2x + 1, Ug = z +x - 1,
ug = -3z° - 8z, u, =-z° -x® + 9x+ 1, u, = 4x> + 182% + 6x ~ 1.

u, = 0, u, =1, u, = -1, Uy = -, u

It is not difficult to prove that the nth term
Uy, = un(x)
of this sequence factors as follows:
-1
u,(x) = (-D"** Iﬁ [-4x cos® km/n - (4 cos® 4m/n - 1)%].
k=1

We conjecture that u,(x) is irreducible in I[x] if and only if » is a prime
positive integer.

Finally, we list some terms of the numerical 6th-order divisibility se-
quence {u,(-1)} and remark that

|4,(-1)| < F, (= the nth Fibonacci number),

for 1 < n < 100 and perhaps for all positive integers #.

0,1,-1,1,-1,-1,5,-8, 7,1, -19, 43, =55, 27, 64, ~211, 343, -307, -85, 911,

u,, = -1919 = -19 - 101, u,, = =989 = =43 + 23

U,y = -3151 = =23 « 137, Uys = -15049 = ~101 + 149

u,, = 5671 = 53 - 107, ug, = -989617855 = 174505u, .
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LOCAL PERMUTATION POLYNOMIALS IN THREE VARIABLES OVER Z,
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The Pennsylvania State University, Sharon, PA 16146

1. INTRODUCTION

If p is a prime, let Zp denote the integers modulo p and Z§ the set of
nonzero elements of Zp. It is well known that every function from Z, X Zp x Z,
into Z, can be represented as a polynomial of degree < p in each variable.
We say that a polynomial f(xz,, x,, ;) with coefficients in Zp, is a Local
permutation polynomial in three variables over Z, if f(x,,a, b), f(c,x,,d),
and f(e, f, x3) are permutations in x,, x,, and Z,, respectively, for all a,
b, ¢, d, e, f € Zp. A general theory of local permutation polynomials in »
variables will be discussed in a subsequent paper.

In an earlier paper [2], we considered polynomials in two variables over
Zp and found necessary and sufficient conditions on the coefficients of a
polynomial in order that it represents a local permutation polynomial in two
variables over Zp. The number of Latin squares of order p wds thus equal to
the number of sets of coefficients satisfying the conditions given in [2].
In this paper, we consider polynomials in three variables over Zp and again
determine necessary and sufficient conditions on the coefficients of a poly-
nomial in order that it represents a local permutation polynomial in three
variables over Zp.

As in [1], a Latin cube of order n is defined as an n x n X n cube con-
sisting of n rows, n columns, and #»n levels in which the numbers 0, 1, ...,
n — 1 are entered so that each number occurs exactly once in each row, col-
umn, and level. Clearly the number of Latin cubes of order p equals the num-
ber of local permutation polynomials in three variables over Zp. We say that
a Latin cube is reduced if row one, column one, and level one are in the form
0, 1, ..., » = 1. The number of reduced Latin cubes of order p will equal
the number of sets of coefficients satisfying the set of conditions given in
Section 2.

In Section 3, we use our theory to show that there is only one reduced
local permutation polynomial in three variables over Z, and, thus, there is
precisely one reduced Latin cube of order three.

2. A NECESSARY AND SUFFICIENT CONDITION

Clearly, the only local permutation polynomials in three variables over
Zp are x, + £, + x5, and x; + x, + 3 + 1, so that we may assume p to be an
odd prime. We will make use of the following well-known formula:



