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ON THE CONVERGENCE OF ITERATED EXPONENTIATION—I 

MICHAEL CREUTZ and R. M. STERNHEIMER* 
Brookhaven National Laboratory, Upton, NY 11973 

We have investigated the properties of the function f(x) = xx* with an 
infinite number of #fs in the region 0 < x< e1/e. We have also defined a class 
of funct ions Fn (#?) which are a generalization of f(x^ , and which exhibit the 
property of "dual convergences" i.e.9 convergence to different values of Fn(x) 
as n -> °o9 depending upon whether n is even or odd. 

An elementary exercise is to find a positive x satisfying 

(1) xx*' = 2 

when an infinite number of exponentiations is understood [1], [2], The stan-
dard solution is to note that the exponent of the first x must be 2, and thus 
x = /2. Indeed, the sequence fn defined by 

(2) u -1 
f , = 2/ n / 2 
Jn+ 1 

does converge to 2 as n goes to infinity. Now consider the problem 

(3) x*'" =|. 

By analogy9 one might assume that 

X = \3/ = "27 

is the solution; however, this is too naive because the sequence /„• defined by 

fo - l 

w f =(±)fn 
Jn+1 \27/ 

does not converge. 
The purpose of this article is to discuss some criteria for convergence 

of sequences of the form 
*This article was authored under contract EY-76-C-02-0016 with the U.S. 
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(5) fn - gf* 
where g^ is some given sequence of positive numbers. Applying these criteria 
to the case where gi - x for all i, we will show convergence of the resulting 
sequence for x in the range 

( * ) • • & 
where e is the base of the natural logarithm. For x larger than e e, the se-
quence fn diverges to infinity, while for x in the range (0, e"e) the even and 
odd sequences f2n and f2n + \ both converge, but to different values. This 
property of "dual convergence" occurs for many starting sequences g., some of 
which we will discuss briefly. 

Before proceedings we should comment on the order in which the exponen-
tiations of equation (5) are to be carried out. Rather than insert cumbersome 
parenthesess we will understand throughout this paper that this expression is 
to be evaluated "from the top down." More precisely gn-i is taken to the gnth 
power, gn~2 ^s taken to the resulting power, and so on. The only other simple 
specification of the ordering of the exponentiations is "from the bottom up," 
but this merely reduces to g raised to the product of the remaining <7Ts. 

It is convenient at this point to introduce a shorthand notation for ex-
pression of the form in equation (5). We thus write for m J> n, 

(6) 9,- 9 

A simple recursive definition of this quantity is 

(7) 
*J 

9n> 

e x p ] u - * + i ^ J " l o g < 7 » } * m>n 

We now prove two theorems on the convergence of these sequences. 

The.QSiQJ(n 1: If there exists a positive integer i such that for all j _> i we 

have 1 <_ g. < ee
9 then the sequence £7 9- converges as n -> °°. 

•3 j = 1 J 

PJiOOJ-: When n > i, we have 

(8) 
j-i 

9, = 0, 

(M 

consequently, we need only prove the theorem when all g. lie in the range 

D. 4 In this case, g g. is easily shown to be a monotonic increasing 
j-i n-i 

function of any g.. This, in turn, implies S g. > '£, g. I i.e., we have an 

increasing sequence. However., the sequence is also bounded because 
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,M , l V - w 
Now9 by an elementary theorem [3], any bounded and monotonia sequence is con-
vergent . 

ThdOh.Qy(\ 2: If there exists a positive integer i such that for all j > i we 
have 0 < g. <^ 1, then the even and odd sequences 

2n 2n + l 
3 tf. and 3 Q-

j = i j = i 

are both convergent as n -*• °°. 

VK.00^1 Again9 we need only prove the theorem when all g. are in the range 
[0, 1], Also, we need only consider the even sequence because the odd sequence 
is merely g1 raised to an even sequence. Now for x and y in the range [0, 1] 
the quantity xy is a monotonic decreasing function of y. Using this induc-
tively on f2n, we find f2nis a monotonic decreasing function of g2n . If we 
now replace g2n with 

Sin* 
'2n- " 

'2n 

. + 2 > 

92 
^2tt+l 

we can conclude that 

(10) fln + 1 < f 2 n -
However, f2n is always bounded below by zero. Thus, we again have a monotonic 
bounded sequence which must converge. 

With the help of these theorems we now return to the case g^ = x inde-
pendent of i. We state the result as a theorem. 

Tkzofi&n 3: For positive x9 

[(*)•••*]• 
Vtioofc For x in the interval 

E x converges as n -* °°  iff x lies in the interval 
i 

1, ee L Theorem. 1 immediately implies conver-
gence. For x larger than ee the sequence cannot converge because, if it did, 
it would converge to a solution / of the equation (see [4]) 

(11) xf - f = o. 
A 

Whenever x > ee
s the lefthand side of this equation is strictly positive for 

all real f and the equation has no solution. The curves of x versus f as ob-
tained (see [2]) from equation (11) for f < e are shown in Figures 1 and 2, 
which pertain to x > 1 and x < 1s respectively. 

When x < 1 Theorem 2 applies and we have convergence of the even and odd 
sequences. Both these sequences must converge to solutions / of the equation 
(12) xxf - f = 0. 

We will now show that, for (— J <_ x < 1 , this equation has only one solution 

and therefore the even and odd sequences converge to the same number. Take 
the derivative of the lefthand side of equation (12) with respect to f9 

(13) ~(xxf - f) = log2x° x?» xxf - I . 
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f (x) 
Fig. 1. The variable x as a function of f(x), with f(x) defined by (11) , 

for values of f(x) in the region 1 < f(x) < e. The dashed part of 
the curve to the right of f(x) = e is not meaningful. 

Fig. 2. The variable x as a function of fix) , with f(x) defined by (11) 
for values of f(x) in the region 0 < f(x) < 1. 
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Keeping x < 1 and maximizing the righthand side of (13) over f we obtain 

(14) j[f(xXf - /) <. -J log a? - 1. 

If the righthand side of this inequality is negative, i.e., when 

(15) 1 > x > (-X , 

then the quantity xx - f is a monotonic decreasing function of / and can only 
vanish at one point. This value of / is the number to which both the even and 
odd sequences must converge. 

n / 1 V 
Finally we show by contradiction that g x cannot converge for x < (—) <• 

Assume it does converge to some number / which must satisfy (11). Define the 
sequence en by 

(16) ^n = fn ~ f-
In the proof of Theorem 2 we showed the even and odd sequences are both mono-
tonic, and thus En cannot vanish for finite n. The relation between £n+1 and 
En i s f+r 
(17) en + 1 = * ' + e » -;f. 
Expanding in powers or >-̂  and using equation (11) gives 

(18) e„+1 = zn log f + ©(e*). 

Consequently the sequence cannot converge if |log f\ > 1 which corresponds to 
x < l ~ ) * This completes the proof of Theorem 3. 

We now return to the case of general g- in equation (5). The above dis-
cussion of g- = x shows that under the conditions of Theorem 2, the limits of 
the even and odd sequences are not in general equal. The special role played 

by (—) impels us to conjecture that the simple convergence of Theorem 1 may 

["/ i \e il 
but we have no proof of this. be extended for g. in the range (*)' • °k 

Note that neither Theorem 1 nor 2 needs any assumption of the existence of a 
limit for g.; this suggests it might be amusing to study g. alternately inside 
and outside the above region. 

In an informal report [5], we have studied several sequences where g. goes 
to zero as j goes to infinity. In general upon iterated exponentiation these 
give rise to dual convergent sequences in the sense of Theorem 2, the even and 
odd sequences both converging to different numbers. As a particular example 

x n 

take g. = —~, and consider g g. as a function of x. In Figure 3, we have 
3 J j=i J 

plotted this function versus x for n = 10 and 11. Increasing n further makes 
no visually discernible difference between the curves; even n essentially re-
produce the n = 10 curve and odd n the n - 11 curve. Note the crossing points 
at x = 1 and 4 where one of the g. is one and therefore the sequence converges 
after a finite number of steps. 

In [5] we have also considered the sequence resulting from g. = jx. Here 
n 

g. goes to infinity as j does; nonetheless, the resulting g g. converges as 
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long as x is less than one. The amusing function resulting is piecewise con-

tinuous with discontinuities at x = •=- where k is any positive integer. Three 

£ 1 1 
different values for « (xj) are obtained by taking x = 77 and re = 77± e in the 

limit of vanishing e, 

Fig. 3. The function Fn(x) = £J (x/j2) for n = 10 and n = 11, showing 

the dual convergence of Fn (x). We note the "crossing points" 
at x = 1 and x = 4, where the two functions are equal. 
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THE NUMBER OF PERMUTATIONS WITH A GIVEN NUMBER OF SEQUENCES 

L. CARL1TZ 
Duke University, Durham, N.C. 27706 

1. Let P(n9 s) denote the number of permutations of Zn = {1, 2, ..., n} 
with s ascending or descending sequences. For example, the permutation 24315 
has the ascending sequences 24, 15 and the descending sequence 431; the per-
mutation 613254 has ascending sequences 13, 25 and descending sequences 61, 
32, 54. Andre proved that P(n9 s) satisfies the recurrence 

(1.1) P(n+1, s) = sP(n5 s) + 2P(n, s - 1) + (n- s+ l)P(w, s - 2) , 

where P(0, s) = P(l, s) = (50>s ; for proof see Netto [3, pp. 105-112]. 
Using (1.1), the writer [1] obtained the generating function 

n=0 s=0 \ ' 

However, an explicit formula for P(n, s) was not found. 
In the present note, we obtain an explicit result, namely 

P(2n - 1, In - 8 - 2) =. ]£ (-l)n^2^ + 2(2j - 1) !*„,/fnf ̂  , 

n 

P(2n, In - s - 1) = Y. (-l)n"'2--7' + 1(2j)!ZK> < 7.M„)< 7.> e, 

• £:<-»*Ct % - *> 
t-0 


