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1. INTRODUCTION 

Let { t n G r ) } n = 0 be t h e sequence of Chebyshev po lynomia ls def ined by 
t0(x) = 1, t1 (x) = x9 tn(x) = 2xtn_1(x) - tn_2(x) f o r n J> 2 . 

These are often called Chebyshev polynomials of the first kind to distinguish 
them from Chebyshev polynomials of the second kinds which are defined by 

u0(x) = 1, u1{x) = 2x9 un(x) = 2xun_1(x) - un_2(x) for n _> 2. 

It is well known that any two Chebyshev polynomials of the first kind commute 
under composition. Explicitly, 

tm(tn(x)) = tn{tm{x)) - tmn(x) for nonnegative m and n. 

Similar identities involving Chebyshev polynomials of the second kind are not 
well known. This paper offers three such identities, one for each of the ex-
pressions um(un(x))5 tm(un(x))9 and um(tn(x)), where um(x) = um(x)/l - x2\ 

Literature relating to the identity tm(tn) = tn(tm) shows that this com-
mutativity9 also called permutability9 iss among polynomials with coefficients 
in a field of characteristic 0S a distinctive property of Chebyshev polynomi-
als of the first kind. For example9 Bertram [1] shows that if p is a polyno-
mial of degree m>_l which is permutable with some tn for n>_29 then p = ±tm. 
Another theorem (e.g., Kuczma [55 pp. 215-218] and Rivlin [65 pp. 160-164]) 
characterizes the sequence {tn} as the only nontrivial semipermutable chain 
(up to equivalence, as described below). Sections 3 and 4 of this paper deal 
with analogous results for the functions un« 

We deal with the Chebyshev polynomials in slightly altered form. Assume 
throughout that all numbers, including coefficients of all polynomials, lie in 
a field of characteristic 0. With this in mind, the nonmonic polynomials tn 
and un are altered as follows: define 

T0(x9 y) = 2, T1(x9 y) = x, Tn(x9 y) = xTn_1(x9 y) - yTn_2(x, y) for n _> 2; 

U0(x9 y) = 0, U1(x9 y) = 1, Un(x9 y) = xUn_1(x9 y) - yUn_2(x9 y) for n >_ 2. 
In the sequel, the polynomials Tn are regarded as Chebyshev polynomials of the 
first kind, and the polynomials Un are regarded as Chebyshev polynomials of 
the second kind. The connections with the polynomials tn and un are simply 

Tn(x9 1) = 2tn(x/2) for n >_ 0 and Un(x9 1) = un_1(x/2) for n >_ 1. 

All the results obtained below for {Tn} and {Un} carry over, as in Corollary 
1, to {tn} and {un}. We also wish to carry over some results to certain poly-
nomials of number-theoretic interest, namely the generalized Lucas polynomials 
Ln(x9 y) and generalized Fibonacci polynomials Fn(xs y)5 discussed in [4] and 
elsewhere. For these, we have 

Tn(x9 y) = Ln(x9 -y) and Un(x9 y) = Fn(x9 -y). 

2. THE FOUR IDENTITIES 

Consistent with the modification un(x) of un(x) already mentioned, we in-
troduce a modification of Un(x3 y): 

Un(x9 y) = Un(x9 y)vhy - x2 for n >_ 0. 
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Although Un is not a polynomial for n >_ 1, it is convenient to say that 
Un(x9 y) has degree n in x. [The polynomial Un(x9 y) has degree n - 1 in a?.] 
Generally, a function P(x, y)/S(x, y) , where POrr, z/) and 50K, 2/) are polyno-
mials of degrees n and 2k, respectively, in x9 is regarded as a function of 
degree n + k in ̂ . 

VzJAJUjtlovit Suppose P(x9 y) and Q(x9 y) are functions of degrees m and n, re-
spectively, in x. The composite function P °  Q is defined by 

P o 50c, i/) = P[Q(x9 y)9 yn]. 

ThzoKzm 1: Suppose m and n axe. nonnega t ive i n t e g e r s . Then 

(1) Tm o Tn(x9 y) = Tmn(x9 y) 

(2) tfw o Tn(x9 y) = # „ „ ( * , y) 
( (~l)m/2Tmn(x9 y) for even m 

(3) TOT o Un(x9 y) = { 
{ (-lYm-1)/2umn(x9 y) fo r odd m 

( (-l)im-2)/2Umn(x9 y) f o r even w 
(4) Um o tfn(a-, z/) = ^ 

( ( - l )0»^>/ 2 T w n (a r , z/) fo r odd m. 

Pft£0&_: I t i s easy t o e s t a b l i s h (as i n [4 ] ) t h a t 
Tm(x9 y) = 2ym/2cos(m cos~1x/2/y) 

and 

so t h a t 

Then 

Um(x9 y) = (4z/ - x2)~1/2 2ymns±n(m cos'1-x12/y) 9 

Um(x> y) = 2.ym/2s±n(m cos~1x/2jy). 

Tmn(x> 2/)-

^ « ( ^ 2/). 

T„ o Tn(x9 y) = 2 ^ / 2 c o s [ m c o s " 1 ^ " ^ ( n cos^x/lSy) 
L 2z/*/2 

S i m i l a r l y , 

77 m / \ o mn/2 . -1 2z/ cos(n cos'1 x12/u) 
Um o Tn(x9 y) = 2ymn/As±n\m cos L - ^ — ^; 

Next , L ^ ^ 

Tm o Un(x9 y) = 2zymn/2cos[m c o s " 1 s i n ( n c o s " V/2i/z7) ] 

= 22/mn/2cos[m(7T/2 - n coS-1^/2v^") ] 

= 2ymn/2[cos WIT/2 cos(mn cos-1x/2/y) 

+ s i n WTT/2 s±n(mn cos~1x/2/y) ] , 

and from t h i s , (3) c l e a r l y f o l l o w s . F i n a l l y , 

Z7OT © Un(x9 y) •= 2ymn/2s±n[m c o s " 1 s i n ( n cos~1x/2/y) ] 

= 22/m n / 2sin[m(iT/2 - n cos^x^Jy)] 

= 2z/77?n /2[sin mn/2 cos(mn cos~1x/2/y) 

- cos irn\/2 s±n(mn cos~1x/2/y) ] , 

and t h i s p roves ( 4 ) . 

CohjoltoJivj 1: Let { t n } n = o and {wn}n=o he t h e sequences of ( u n a l t e r e d ) Cheby-
shev polynomia ls of the f i r s t and second k i n d s , r e s p e c t i v e l y . Put u_1(x) E 0 
and un(x) = w n ( ^ ) / l - ru2 for n j> 0 . Then fo r nonnega t ive m and n , 
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(10 *»(*„(*>) = *„„(*) 
(2') um(tn(x)) = umn+n_x(x) 

( (-1)m tmn+m(x) f o r even m 
(3') *„(£„<*» = \ , w _ 

( (_1)0»-W/2M (X) f o r o d d „ 
mn+m-1 

( (-1) m/2^(m + i)(n + l)(̂ ) fo*" even 77?' 
(4 0 *„(£„<*)) = ̂  

( (-l)^~1^2Umn+m+n(x) for Odd 772. 

VtLOOJ: These identities come directly from Theorem 1 via the transformations 

tn{x) = —Tn(2x9 1) and un(x) = ^Un + 1(2x9 1) for n >_ 0. 

We turn now to the problem of expressing (l)-(4) in terms of generalized 
Lucas and Fibonacci polynomials. Corresponding to the functions Un (x9 y) we 
d e f i n e _ 

Fn(x9 y) = Fn(x9 y)/x2 + ky fo r n >_ 09 

noting that this equals iUn(x9 -y). Two lemmas are helpful. 

Lmma 2a: For 0 <_ m £ n9 

(5) £*(#» y)£n(x> y) - ~Fm(x> y)Fn(x9 y) = 2(-y)mLn_m(x9 y) . 
VfttiOjhj I t i s w e l l known and e a s i l y shown by i n d u c t i o n t h a t 

L n ( # , y) = a n + 3 n and Fn(a?, 2/) = a n - 3 n
s 

where a + 3 = os and a 3 = -y• The desired identity now follows immediately. 

lemma 2 b: For 777 _> 09 

^(-wc, -2/) = imLm(x9 y) and Fm(£>?, -y) = imFm(^9 2/). 

VtiOO^: This is easily seen by induction, using the recurrence relation 

Hm(x9 y) = xHm_1(xs y) + yHm_2(x9 y) 

satisfied by both {Lm} and {Fm} for 777 .> 2. 
From (1) and the relation Tn(x9 -y) = Ln(x9 y) comes 

Tm[Ln(^9 y)9 (~l)nyn] = Lmn(x9 y)9 
so that 
( l a ) Lm o L n f e 9 z/) = Lmn(a;, 2/) fo r odd n . 
But , for even n5 , -, r . 

(6) L* - a m _ 2 LrV + ^ - ^ " V 1 - ••• + ( - D U J ^ ^ U J - W * . 2/>. 
where t he a t ' s a r e c o e f f i c i e n t s in t h e polynomial r _ r n 

Tm(*, y) = * m - a m _ 2 ^ " 2 2 / + am_hxm'hy - . . . + (-1) L 2 J a £ * V 2 J ; 
h e r e , l = 0 i f 777 i s even and 1 = 1 i f m i s odd ( see Lemma 2e) . Adding 

2a nLm-2yn + 2a c L m ' V n + ••• 
m-2 n & m-6 n J 

to bo th s i d e s of (6) g i v e s 
( l b ) Lm o Ln(x, y) = £„,„(*, y) + 2 ( a m _ 2 ^ - 2 i / : + a^L^y3n + • • • + a , L n V » ) 
for even n9 where 
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0 if m - 2 mod 4 
1 if m = 3 mod 4 S A 2 if m = 0 mod 4 and t . ip4^] +1. 
3 if m E 1 mod 4 

Now from (2) and t h e r e l a t i o n Un(x9 -y) = -iFn(x9 y) comes 

iUm[Ln(x9 y)9 ( - l ) n 7 / n ] = F m n f e , z/), 
so t h a t 
(2a) fm ° Ln(x9 y) = FMM(a:, y) f o r odd n . 
But fo r even n9 

Fmn(x> 2/> = ^Um[Ln{x9 y)9 yn] 
= Fm[Ln(x9 y)9 -yn] 

= /L2
n - t*ynFm[Ln(x9 y)9 -y»] 

= Jn(x9y)Fm[Ln(x9y)9 -yn]9 
by Lemma 2a. Thus9 

O) fmn (z, y) = in {x, ^fc- 1 - K-rf-'y + KsK'5y2n 

.... + (.nmlXvm-}, 
where the Zfy's. a r e t h e c o e f f i c i e n t s of t h e polynomial fm-il 

Fa(x, y) = x™-1 + bm_3xm-3y + bm_5xm-5y2 + ••• + blxtj-~ri ; 
h e r e , £ = 0 i f m i s even and £ = 1 i f m i s odd ( see Lemma 2 e ) . Adding 

• 8 * 2Fn(x, y)(bm_sLm
n-*y" +bm.1Lm

n-1yin + • • • ) 
to both sides of (7) gives 

Fn(x9y)Fm o Ln(x, y) =Ymn(x9y) + 2jn(x9 y)(bm_3Lm
n-3yn + bm.7Lm

n'7y3n + • • • ) • 

For n > 0 , we d i v i d e b o t h s i d e s by Fn (x9 y) and have 

(2b) Fm o Ln(x, y) = | ^ + 2 ( ^ 3 C V +bm.7Lm
n-7y3n 

+ ••• + bsL*ytn) fo r even n > 09 
where 

0 i f 777 E 3 mod 4 
1 i f 77? E 0 mod 4 
2 i f 77? E 1 mod 4 
3 i f 777 E 2 mod 4 

I d e n t i t y (3) l e a d s to 

a n d t m 2p-ZJ] + 1. 

_ (-1) Lmn(x, y) fo r even 777 
(8) Tm[-iFn(x9 y)9 (~l)nyn] = \ m±i _ 

(-1) 2 iFmn(x9 y) fo r odd 777. 
For even n _> 0, we apply Lemma 2b to find, without difficulty, that 

• ~ \ -p _. J iwn f ° r even n and even 777 
^ a ; m °  n \ lmn for even n and odd w. 
For odd n, suppose first that 777 is odd also. Then (8) with Lemma 2a gives 

Lm[Fn(x9 y)9 -yn] =Fmn{x9 y) . 
As in the derivation of (lb), we add 

2(am_2F;-v +am„6Frv" + •••) 
to both sides. This gives 
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(3b) Lm o Fn(x, y) = Fmn(x, y) + 2(am^F^2yn + * . ^ " V * 

+ ... + a3~F*ytn) for odd n and odd m, 
where the ak

%s9 ss and t are the same as for (lb). 
Continuing with odd n, suppose now that m is even. Using (8) and Lemma 

2as we find 

(3c) Lm o Fn(x, y) = Lmn(x, y) + 2{an_^yn + am.6F^y3n 

+ •-• + asF^ytn) for odd n and even m, 
where the ak's5 ss and t are the same as for (lb). 

Identity (4) leads to 
k 2 _ (-1) iFmn(x, y) for even m 

(9) Un[-iFn(x, y)9 (~l)nyn] = { m^i 
(-1) 2 Lmn(x9 y) for odd m. 

whence, 

,, N — — ( FOTM for even n and even m 
(4a) m̂ °  Fn= i r for even n and odd m, 

For odd n5 suppose first that 777 is odd also. Then (9) and Lemmas 2a and 2b 
applys and we find 

£„»(*» 2/> " M M * . y ) , -y*] = / F * - 4y"Fm[Fn(x, y ) , -y»] 

= L„(X, yxFr1 - K-tK^y" + Ks*r*yln - • • • ) . 
At t h i s p o i n t , we add 2L„(a;, y) (bm_3~F%~3yn + bm-7~F™~7y3" + • • • ) t o b o t h s i d e s 
and then d i v i d e bo th s i d e s by Ln(x, y), g e t t i n g 

_ Lmn(x> J/) _ _ 
(4b) Fm o Fn(x, y) = Ln(x^ y) + 2 ( f o m _ 3 F r V + K.7F^7y3n 

+ • • • + bsFsytn) fo r odd n and odd m, 

where the bk
%s> s, and t are the same as for (2b). 

Continuing with odd n9 suppose now that 777 is even. With the method which 
is now familiar9 we find 

pn(x> y) _fl tn 
+ . . . + bsFny ) f o r odd 777 and even 77?9 

where the bk's9 s9 and t are the same as for (2b). 

Table 1. Examples of Composites Involving Generalized 
Lucas and Fibonacci Polynomials 

From (lb) and (2b), for even n > Oi 

?2 °  Ln= FinlFn 

Fh o Ln= F,n/Fn + kLny* 

^5 ° ^rT L5n + l0Lnyn ^5 ° Ln-FsjFn + 6L*2/» 

^6 ° ^ = ^6n + l2Lnyn + V * ^6 ° ^iT W ^ n + 8 ^ n 

L7 o L n = L ? n + 14L„5f + 14Ln 2 /
3 n F 7 o L n = F7n/Fn + I Q ^ Z / " + 2z/3* 

(4c) Fm o Fn (« , y) = ""Y, " ' + 2{bm^Fm
n'"yn + bn.7F^7y3n 

L2 - £„= I 2 n + 
£ 3 ° L « = £ S » + 

i * ° Ln = Lkn + 

kyn 

(>Lny" 

8L2
ny" 
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Table 1—continued 

From (3b) and ( 3 c ) , fo r odd n >_ 1: 

L3 ° Fn = Fjn + ^nyn £2 ° £n = L2n + Ml" 
L5 °F„ = F5n + 10F„V Lk °.F„ = Lhn + 8%y« 

L7 ° Fn = F 7 n + 14F„V + 14FnV £s ° *V, - L6n + 12F„V + V 

^9 ° ?n = ^9„ + 1 8 ^ V + 6 0 ^ V LB ' Fn " i8n + 1 ^ " + 32FnV* 

From (4b) and ( 4 c ) , fo r odd n > 1: 

*"l ° £» = l F2 ° £„ =^2n/ £ n 
? , ' ? » = £ s „ / £ « + 2y" F„ o yB = f ^ / £ „ + 4F„y" 

^5 ° F» = L5jLn + Gflyn F6 - pn = F6 n/L„ + 8F„V 

*7 ° *n = ^ A + ^ n V + 2y3« ? , « ? „ = Fe„/Ln + l2F*yn + 8Fny3n 

F9 o pn = L 9 n / L n + uptyn + 20p2y3n ? i Q o fn =F10n/Ln + 1 6 F ^ " + 4Wny*» 

For m _> 0, define r 

" ' • . ( * > . « • ( : ) - • + ( : ) - - % • • • • • ( [ ^ , ) « v | f l " 
^ ( * » 2/) = Fm(^5 -2 / ) , 

where £ = 0 for even ffz and £ = 1 for odd m. 

Lemma 2c : Suppose m and ft a r e nonnega t ive i n t e g e r s . Then 
Vm ° L*(x9 y) for even n 

Wm ° L*(x9 y) fo r odd n9 

Wm ° L*(x9 y) f o r even m and even n 

Vm ° L*(x9 y) fo r even m and odd n9 

fifm ° F*(x9 y) fo r odd 777 and even n 

and 

£*(#» y) = 

O * . 2/) = 
Fm °  F^{x9 2/) for odd m and odd n; 

in these formulas, after expansions on the__right sides, each symbol of the 
form L( (or F[) is to be changes to Lj (or Fj). (This "symbolic substitution" 
is discussed in Hoggatt and Lind [3]-) 

VtW0_£_l These are direct results of writing 

Zn(x> y) = a" + 3 n and Jn(x, y) = an - Bn 

and app ly ing t h e b inomia l formula , where a + 3 •= x and a|3 •= -2/. 
Lejnma 2d*' Suppose m and n a r e nonnega t ive i n t e g e r s . Then 

Tm ° Ln(x9 y) f o r even n 
^ n ( ^ 2/) = 

and 
L^ ° Ln(x9 y) fo r odd n 

Fmn(X* 2/) ( m̂ ° -^nte." 2/) f o r e v e n n > ° 

Fw ° £ „ ( # , 2/) fo r odd n . Fn («5 2/) 
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Vfiooj*- Near (la) and (2a) these two are already proved. (They are restated 
here for later convenience and as inverse formulas for the formulas in Lemma 
2c. Tables of coefficients for these two formulas are found in Brousseau [2, 
pp. 145-150].) 

Lojmma 2e: For m >_ 0, 

P m Im - J 
3 J-0 ;: - > 

-"-Zjyj yJ with p 
7??/2 fo r even m 
(m - l ) / 2 for odd m 

where t h e summand on the r i g h t equa l s 22/£>,by d e f i n i t i o n s in case j = p = 777/2. 
Also 

'.<.. »>-£„m xm-2i-\yj w ± t h ^ / (m - 2) 
I On - 1) 

2) /2 for even 777 
/2 for odd 777 • 

Vtwofc These well-known formulas are easily proved by induction. 

The composite functions in Table 1 can also be expressed as linear combi-
nations of terms of the form Ljnyk or Fjnyk» To obtain such expressions, one 
may use Table 1 with substitutions from Lemma 2c9 or one may use Binet forms 
(e.g., Fn ~ an - 3n) and binomial expansions. These methods give the follow-
ing results. 

For even n3 the coefficients cm_2. in the expression 

Lm ° Ln = °mLmn + °m -2L(m - 2 ) n 2 / " + * ' ' + °m - 2pL(m -2p)n 2/ pn 

where p is as in Lemma 2e and for temporary convenience L0 - 1 (instead of 2): 

Table 2 

m = 2 
3 . 
4 
5 
6 
7 
8 
9 
10 

Gm 

1 
1 
1 
1 
1 
1 
1 
1 
1 

°m-2 

4 
6 
8 
10 
12 
14 
16 
18 
20 

m - h 

16 
30 
48 
70 
96 
126 
160 

°m~B 

76 
154 
272 
438 
660 

Cm-8 

384 
810 
1520 

°m-10 

2004 

Formulas o. 

k°*0 

m-2j 

2k\ k 
t\/m - 2k\ 

for 0 <_ j <_ p s where the 
summand on the right = 2, 
by definition, in case 

k = m/2 
(which occurs in cm.2pfor 
even 777) • 

For even n3 the coefficients c m-23 -1 
in the expression 

°  Ln = em-lhm-l)n + Cm - 3L(m - 3)»2/ " + + (3. m- 2c7~l (m- 2? -l)n y' 

where (7 is as in Lemma 2e and for temporary convenience L0 = 1 (instead of 2): 
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Table 3 

m = 2 
3 
4 
5 
6 
7 
8 
9 
10 

°m-l. 

1 
1 
1 
1 
1 
1 
1 
1 
1 

m - 3 

3 
5 
7 
9 
11 
13 
15 
17 

'^m-5 

13 
25 
41 
61 
85 
113 

Gm-7 

63 
129 
231 
377 

°m-9 

321 
681 

Formula: o. m-2j-1 

4^ (m - k - \\(m - 2k - 1\ 
A A k A J - k ) k = 0 

for 0 < j < q 

For odd n 2 19 the coe f f i c i en t s cm_2j i n t n e expression 

omLmn + cm.2L{m_2)nyn + • - • + em_2vL{rn-2V)nyvn f o r even TT? ̂  0 

C / M
 + ^ -2^(m-2)n2/ n + " • ' + °m - 2p *<> - 2p) n2/P" f ° r odd m >_ 1 

are precisely the same as in Table 2. Similarly, for odd n >_ 1, the coeffi-
cients e . in the expression 

(c F, x + e ~F. N vn + • • * + e ~F, s Vqn for even m > 2 
— _ J m-l (m-l)n m-3 (m-Sjn*7 m-2q-\ {m-2q -l)nu — 

lC
m-lL(m-l)n +

 Cm-3L(m-3)riyn + • • • + ^m-2q ~ l^{m - 2q ~ l) nh^ f Or odd 772^ 1 . 

are p rec i se ly the same as in Table 3 . 
Now l e t us r e c a l l ( l a ) , (2a ) , (3a ) , and (4a) : For odd n _> 1, 

o L„ and Lm o Lv 

for even n _> 0, 

Lmn for even ??? _>_ 0 __ _ 
° F„ =< and Fm o Fyi 

Lmn for odd ?TZ _> 1. 

These four identities lead to identities for products of composites. For ex-
ample, suppose s and a are odd positive integers and t and T are even nonneg-
ative integers. Then 

Fs o p t = Lst and Fa °  FT - LaT . 

By identity (5) in [4], LstL0T = Lst + CTT + Lst _ CTT. Therefore, 

(Fs °  Ft)(F0 °  FT) = Lst + aT + L8t_aT. 

Ten identities are obtainable in this way. To facilitate listing them, we 
make certain abbreviations. The identity just derived appears below in (10) 
as _ 

(F8 O Ft)(F0 o FT) = L$ + L\,9 oeoe, 

where the designation "oeoe" means "for odd s, even t, odd a, even T0" 

Table 4. Product-Composition Identities 

Notation: s, i, a, T are nonnegative integers and st _> err. 
Also, $ = st + err and \> = st - ax as in the example above. 

LH + L\>, oeoe (11) (" F& + F\>, oeoo 
= } p J J>> oeee ? „ ? f 0 } = ) F% - F^ oeeo 

F* + F^, eeoe s * °  T 1 Li + L\,, eeoo 
L* - L^, eeee ' L* - L\>, eeeo 

(10) 

(Fs o Ft)(F0 o pT) 
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(12) 

@e °  ̂ t)(La °  ̂ T) 

(14) 

(Ls ° Ft)(LQ o FT) 

(16) 

(Fs o Lt)(Fo o L T ) 

(18) 

(Fe o Lt)(La o LT) 

Table 4 .—continued 

(13) i^ - F^, oeoe 
L| + L^s oeee 
L_| - L\>, eeoe 
Ftf + F^ s eeee 

y ~ ̂ bs oeoe 
Fi + FL, oeee 
F^ - F^, eeoe 
L& + L^j eeee 

Ljjj + L^, 0000 
and eooo 

L% 

(15) 

L^, ooeo 
and eoeo 

(17) 

Lt)(L0 
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3. FUNCTIONS COMMUTING WITH U (x) 

Bertram [1] proves that, except for a possible factor -1, the only non-
constant polynomials that are permutable (i.e., commute) with nonlinear Cheby-
shev polynomials (of the first kind) are Chebyshev polynomials (of the first 
kind). Here we obtain analogous results for Chebyshev polynomials of the sec-
ond kind. The same arguments give further analogous results for composites 
involving one Chebyshev polynomial of each kind. 

_There is no real loss in disregarding the symbol y in Tn(x5 y) , Un(xs y) , 
and Un(xs y) in th^s section. Accordingly, we write Tn(x) for Tn{x1) 1), Un(x) 
for Un(xs 1), and Un(x) for 7Jn(x5 1). Following the notation and arguments in 
Bertram, if P and Q are functions, the substitution of Q{x) for x in P(x) is 
denoted either by P{Q(x)) or P(Q). Ordinary multiplication of functions is 
given by juxtaposition, as in /4 - x2Un(x), or by brackets* as in A[Pr]J and 
(4 - %2)[Un(x)] 3 in order to avoid confusion with the composition (i.e., sub-
stitution) operation. 

Proofs in this section are abbreviated or omitted, but the interested 
reader with[l] at hand should have no trouble writing out the proofs in full. 
One must of course bear in mind the transformations already given between Tn , 
Uns and tn3 un* 

Lgynma 3cit Suppose P(x) satisfies the following differential equation for some 
positive integer ni 

(4 - x2)lPf(x)]2 = n2[4 - P2'fo)]. (20) 

If ~P(x) is of the form /4 - x2P(x) 3 where p(x) is a polynomial^ then 

P(x) = ±Un(x). [That is, f{x) = ±Un(x) «] 

Lemma 3b: Suppose A(x), a polynomial of degree j _> 0, and Q(x) = A - X2Q(x),. 
where Q(x) is a polynomial of degree n- 1 _> 1, satisfy the differential equa-
tion 

(21) {A(x)[Qf(x)]J}2 = [^(GGc))]2. 

if p(x) = A" — x P(x), where P(x) is a polynomial of degree m- 1 > 0, is per-
mutable with QGc), then P(x) satisfies the same differential equation with n 
replaced by m. 
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P/lOOJ: Let __ _ 
G = {A[PfV}2 - [m'A(P)]2

s 

and suppose G 1 0. The highest degree term of both {A\PfY}2 and |>J4(P)]2 

( - l ) ^ " ^ ^ 2 ^ , 

so that the degree d of G is strictly less than 2JTT7. We next prove that G i 0 
also implies <f = 2jm. Using (21), the commutativity, and the chain rule, 

n2*G(Q) = n2HA(Q)[Pf(Q)V}2 - m2j'n2<? [A(P(Q))'] 2 

= A 2 [Q fl 2J [Pf(Q) ] 2J - m2j' [A (P) ] 2 [Qf(P) ] 2* 

= [Qf(P)l2j{A2[P>l2j' - m2^'U(P)]2} = [G'G 5)] 2^. 

Equating degrees gives nd = <i + 2j(n~ 1)777 9 so that d = 2JTT? since n + 1. This 
contradiction shows that £ E 0, as desired. 

ThuofiQJfn 3: Let {Z7n}n = 0 be the sequence of (altered) Chebyshev polynomials of 
the second kind. Suppose P is a polynomial of degree m - 1 _> 0 such that the 
functions /—— 

Un(x) = /4 - ̂ 2[/n(x) and P(x) = A - ̂ r2P(x) 

are permutable for some positive integer n. Then P — [/OT if n is odd, and P = 
±J/m if n is even. 

P/100̂ : First suppose n = 1. If m = 1 also, then the desired result is easily 
obtained. If m > 19 then the method of proof of Theorem 6 below shows that 
P = ±Um. Now suppose n > 1. By Lemma 3a, ±Un are the only polynomials Y of 
degree n - 1 _> 1 which satisfy the differential equation 

^ A2iY'-\h = n4U(Y)]2
9 

where Y(x) = /4 - ic2Jfa) and ,4(x) = 4 - a?2 . But the hypothesis that Un(P) = 
P(Un) for n _> 1, together with Lemma 3b implies that P satisfies this differ-
ential equation with n replaced by m. Thus9 taking square roots, 

(4 - x2)(p'(x)]2 = n2[4 - P2(x)] or -n2[4 - P2(x)]. 

The latter leads to m2 + nl = 0, which is impossible. Therefore, Lemma 3a ap-
plies, and P = ±Um* If n is odd, then Z7n is an even function, and P = Um% if 
n is even, then Un is an odd function, and P = ±Um. 

Identities (2) and (3) show that Um and Tn sometimes commute. Theorems 
4 and 5 below tell precisely when this happens and also answer the following 
questions: What polynomials Q commute with a given Uml What functions of the 
form /4 - x2P(x) commute with a given Tn for n > 2? The proofs, which are 
omitted, follow closely the arguments already used in this section. 

Tkex)Ji2Jfn 4: Suppose Q(x) Is a polynomial of degree m >_ 2 and Q(x) commutes with 
~Un(x) for some n >_ 1. Then 77? E 1 mod 4 and §(#) = Tm(x) . Moreover, if 

Q(Un(x)) = -Un(Q(x)) for some n >_ 1, 

then m E 3 mod 4 and P(#) •= ̂ m te) . 

ThuoflQJM 5: Suppose P(x) is a polynomial of degree 77? - 1 > 0 and 

P(x) = A - x2P(x)." 
If P(#) commutes with Tn(x) for some n >_23 then 777 E 1 mod 4 and PGc) •= Um (x) . 
Moreover, if P(T„ (#)) E ™27„(p(^)) for some n >_ 2, then 777 E 3 mod 4 and P(#) = 
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k. SEMIPERMUTABLE CHAINS 

Two functions f(x) and g(x) are defined in Kuczma [5, p. 215] to be semi-
permutable if there exists a function 

,f N Kx + L 
such that Mx + N 

(22) f(g(x)) = $[g(f(x))]. 
Two functions f(x) and y(ra) are equivalent if there exists a function 

(23) $(x) = p# + s, where r fi 0, 
such that 

4)"1 [/(*(«))] = v{x). 
LommCL 6a: Suppose <$>(x) and $(a?) are as just described and that (22) holds. 
Then the functions 

Fix) = (J)"1 [/((f) (̂ ))] and G(a) = cfT1 te(<f>(a0) ] 

are semipermutable. 

FVL0O£.' For Y(a?) = "7 *:, where 4 = £ - sM9 B = L - sN9 C = 2>M, and P = 2W, 
; L>X T 1/ 

we have 
^(GG*?)) = (J)"1 o f o g o <j>(x) = (f)'1 o $ o £ o / o (j)(x) 

= Y o (J)"1 o ̂ 0 / 0 (j)(x) = Y[(7(F(a:))], 

where the symbol °  indicates composition. 
Suppose T is a sequence of positive integers and 

P = ipn(x)} and D == {dn(x)} 
are sequences of functions indexed by T. We define P to be an SP chain under 
D if every pair of functions in the set 

ipn(x)dn(x) : n e T] 

are semiparmutab le . This d e f i n i t i o n g e n e r a l i z e s t h a t fo r SP c h a i n s given in 
[ 5 ] , which i s o b t a i n a b l e from t h e p r e s e n t d e f i n i t i o n i n t h e case dn(x) E 1 fo r 
a l l p o s i t i v e i n t e g e r s n. 

I f P = {pn(x)}nET i s an SP cha in under P = {dn(x)}neT and Q = {qn(x)}neT 
i s an SP cha in under E = {en(x)}neT9 then P and Q are equivalent i f t h e r e e x -
i s t s (J)Or) as in (23) such t h a t 

cf)"1 [pn((|)(^) )dn(cf)(^))] = qn(x)en(x) f o r a l l n i n T. 

CoSiO&LaSiy to Lomma 6at Suppose {un(x)} i s an SP cha in under {dn(x)} and $(x) = 
vx + s , where 2» ^ 0 . Wr i t e 

* ' 1 [ p n ( * t o ) ) ^ n ( * t o ) ) ] as ( 7 n ( x ) e n t o ) . 
[This is always possible, since we may choose en(%) = 1 for all n in T.] Then 
lqn(x)} is an SP chain under {en(x)}. 

If T is the sequence of odd positive integers, and pn(x) is a polynomial 
of degree n - 1 for each n in 1% and P is an SP chain under P., then P is an 
even SP chain under D. Similarly, if V is the sequence of even positive inte-
gers, and pn(x) is a polynomial of degree n - 1 for each n in F, and P is an 
SP chain under P, then P is an odd SP chain under P. In particular, we define 
a Chebyshev even chain by 

|pn(a0| = Un(x) and dn(x) = A - x2 for n = 1, 3, 5, . ...; 

and a Chebyshev odd chain by the same symbols, for n - 2, 43 6, ... . 
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Finally, if r is the sequence of all the positive integers, and Pn(x) is 
a polynomial of degree n - I for each n in T9 and P is an SP chain under D9 
then P is a complete SP chain under D. 

Lemma, 6b; Suppose a, a, and e are nonzero, g2 ^ 4ay, FOr) = e/ax2 + 3# + y, 

and G(x) - Vox1 + $x + y(ax2 + bx + c) . If F(x) and £(x) are semipermutable, 
then F{x) and £(#) are equivalent [with the same § in (23)], respectively, to 
the functions 

U1(x) = A •- x2 and a3Us(x) = a3(x2 - l)/4 - #2, where a2 = 1. 

(24) [^(Gte))]'2 = e 2[a 2aV + (2a2a£ + aga2)^5 + (a2£2 + 2a2ae 

+ 2a6afc + aya 2 ) ^ +.(2a2ie + a3£2 + 2a3ae + 2aya£>)#3 

+ (a2<?2 + 2a$bc + ayZ?2 + 2ayae)x2 + (a3<?2 + 2a$be)x 

+ (aye2 + y) + 3(a#2 + bx + c)/oac2 + 3x + y], 
and 

(25) [KG(F(x)) + L]2 = Z ^ a V e 6 * 6 + 3a3$a2e6x5 

+ a2a^5(3a + 2ab)xh/ax2 + 3^ + y + ••• 

+ 2ZL( ) + L2, 

where the expression indicated parenthetically after 2KL contains no nonzero 
constant multiple of xh/ax2 + $x + y. 

In (22), suppose M ̂  0,» Then, squaring both sides of (22) and writing 

[MG(F(x)) + N]2[F(G(x))]2 = [KG(F(x)) + L ] 2 , 

the left side contains for its highest degree term a multiple of x12
9 whereas 

the highest degree term on the right side is K2aha2eBxG . Therefore, M = 0, 
and there is no loss in assuming that §(x) is simply Kx + L. 

Equating coefficients of Xs and x5 in (24) and (25) gives K2a2eh - 1 and 
ab = $a. The assumption 32 £ 4ay keeps /ax2 + $x + y from being a polynomial, 
and this implies that the coefficient (a23<22 + 2a3ab)e5 in (25) equals 0; to-
gether with ab = 3# arld a # 0, this means 3 = b = 0 . Thus, 

(26) [F(G(x))]2 = £2[a2a2*6 + (2a2ae + aya2)xh 

+ (a2<?2 + 2ayac)x2 + aye2 + y] 
and 

(27) [Z£(Fte))+L]2 = X2[a2g2x2 + y(ae2 + 1) J [a2a2ehxh + 2aae2 (yae2 + o)x2 

+ (yae2 + e)2] + 2KL/a2e2x2 + y(ae2 + 1)(aae2^2 + yae2 + o) + L2 . 

Again comparing coefficients, we see that either L - 0 or /a2e2x2+ y(ae2+ I) 
is a polynomial. The latter implies ae2 - -1, which, by comparison of odd 
powers of x, leads to L - 0„ 

Multiplying out the right side of (27) and again comparing coefficients 
with (26), we find 

(28) ya(2ae2 + 1) + 2ae(l - ae2) = 0, 

(29) a2oeh(ao + 2ya) - (yae2 + e) (3ayae2 + ae + 2yd) = 0, 

(30) e2(l - ae2 + a3e6) - a2e6 + yae2(ae2 + I)(yae2 + 2c) = 0. 

Evaluating (26) and (27) at x2 = -y/a and equating them gives e2 = K2o2
s so 

that c2 = a2g2. We now rewrite (28), (29), and (30) with q = ya and ae = 5e, 
where 6 = 1: 
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(31) 2c3e - 26c?2 - 26ce2q - qe = 0, 

(32) Sc5e2 + (2qe3 - 8)c3 - kq8c2e2 - (3Sqe3 + 2)qce - 2q2e3 = 0, 

(33) a3e(e2 - 1) + 8c2 (1 - e4) + qe2(c?e + 8)(^e2 + 2c?) = 0 . 

If 26ee + 1 = 09 no q satisfies both (32) and (33). Therefore, 2&ce + 1 £ 09 

and in this case we find 
= 2c2(ce - 6) 

q e(28ce + 1 ) 

from (31) and substitute into (32) to obtain c2e2 = 1. For 6 = 1, we find 
from c2e2 = 1 that ce = -1, since if ce = 1 then q = 0, contrary to y / 0 ^ a. 
Simplifying the expression for q gives yae = he2. Also, from as = 6c? comes 
as2 = -1. Similarly for 6 = -1, we determine ce - 1, yae =-4c?2, and a£2 = -l. 

Now for (f)(rc) = e/yir/2, it is easy to verify that 

^[Fi^ix))] = A - x2 

and, using the fact yae = 46, that 

Finally, it is easy to check directly that these two functions are semipermut-
able if and only if e2 - ±1, and this completes the proof. 

_1[£((|)G*0)] = ^2{x2 - 1>A~ 
:heck directly that these t^ 
= ±1, and this completes tt 

Tho.oh.Qjfn 6: Every even SP chain under a constant sequence of the form 

dn(x) = /ax2 + $x 4- y 

is equivalent to a Chebyshev even chain {anUn(x)}, a2 = 1, n = 1, 3, 5, ... . 

Psioofi: Suppose {yl9 2/392/53 ...} is an even SP chain under d(x) = dn (x) as 
above. Let ~yn (x) - yn (x)d(x) . By Lemma 6b, we may assume that d(x) - /4 - x2 . 
Since every even polynomial yn(x) of degree n - 1 is a linear combination of 
even U^ Or)Ts up to degree n - 1, we write 

m 

yn(x) = ccj]n(x) +J2 h~Ui(xS>> n > m >_ l9 
i = l 

where b^ = 0 for even i. Suppose bm ^ 0. Then 

(34) [^(^(a))]2 = (4 -y2
n(x)) 

and 

(35) [KyiyAx)) + L ] 2 = X 

( m _ r m — 12 ) 

• _ W __ __ I 2 

i = l J 
" _ _ m _ __ "I 

i = i J 
+ 2ZL 

The highest degree term on the right side of (34) is a2x2n , while that on the 
right side of (35) is (-l)n-1K2a2x2n . Thus, K2 = l,_so subtracting (35) from 
(34) and using Lemma 2a [rewritten as Tm{x)Tn{x) + Um(x)Un(x) = 2Tn„m(x) for 
0 £ m < n], 
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777 

0 = ly^yjx))!2.- iKy^ix)) + L]2 = -a2I72(x) - 2 a n X > ^ (x)tf. (x) 

r m -|2 ( m r m I2) 

- 2ZL aMTn(x) + X X 2\ (x) - L2 
L i -1 J 

777 

i = i 

""|[Ê t̂o)l +T Ji^te)l2> - 2ZLL^(X) + 2>^<*)1 

- L2 + 4. 

Thus, 

(36) 0 = -4a2 - 4a; 

2ZL 

m r m -. 

£ = 1 L ^"1 l<.i<j<.m J 

UiV^ +£^to)| ^(a» - L2 + 4. 

If L ^ 0» the right side of (36) is a polynomial of degree n. Therefore, L = 
0. If bm £ 0, the right side of (36) is a polynomial of degree n - 1, again a 
contradiction. Therefore, 772 = 0, so that 

~yn(x) = aj]n(x) for n > 1, 

and (36) shows that a2 = 1 for n > 1. 

Lemma lei'- Suppose a, a, and £ are nonzero, 32 # 4ay, 

F(x) = (ere + f)/ax2 + 3x + y and £(x) = (ax3 + to2 + ex + d)/ax2 + $x + y . 

I f F(x) and £(x) a r e semipermutab le , then F(x) and £(x) a r e e q u i v a l e n t [wi th 
the same (J) in (23 ) ] , r e s p e c t i v e l y , t o t h e f u n c t i o n s 

U2(x) = x / 4 - x2 and ahUh(x) = a 4 ( x 3 - 2x ) /4 - x2, where a2. = 1. 

VKOO^I Wr i te 4 = / a x 2 + 3x + y and B = ax 3 + 2?x2 + ox + d9 so t h a t 

F(x) = (ex 4- / ) 4 and £(x) = BA. 

Direct computations show 

(37) [F(G(x))]2 = ae2^(x) + (a/2 + 23e/ + ye2)£2(x) 

+ [e(2af + 3 e ) £ 2 ( x ) + f(&f + 2ye)]&4 
and 

(38) [KG(F(x)) + L ] 2 = Z 2 [ « 8 F 8 ( x ) + Q7F7 (x) + ••• + e x F (x ) + « 0 ] 

+ 2KLG(F(x)) + L 2 , 
where 

S7 = a(2aZ? + (3a), # 8 = aa , 
Q6 = 2aae + a£ 2 + 23a£> + y a 2 , Qs = 2aad + 2abe + 23ae + &b2 + 2ya&, 
Qh = 2afcd + a e 2 + 23a<i + 2$be + 2yae + yb2

 9 
Q3 = 2aed + 2gZ>d + 0c2 + 2yad + 2ybo 9 Q2 = ad2 + 2Bed + lybd + y e 2 , 
gx = d(^d + 2 y e ) , § 0 = yd2. 
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Comparing coefficients of x16 in (37) and (38) gives a2 = K2a2eG . In (38) 
only the expression K2a(2ab + $a)F7 (x) comtains a nonzero multiple of x13A9 
and (37) contains no such term. Specifically, (38) contains the term 

K2a3ae7(2ab + $a)x13A. 

The condition $2 + 4ay keeps A from being a polynomial, and since K2a3ae7 ± 0, 
comparison with terms in (37) gives 

(39) 3a = -lab. 

In (37) only the expression e(2af + $e)G2(x)BA contains a nonzero multi-
ple of x11A3 and (38) contains no such term. Writing this expression as 

e(2af + $e)(aa2x8 + *».)(ax3 + ---M, 

we f ind by comparison wi th (37) t h a t 

(40) 3e = -2otf\ 

Since A i s no t a po lynomia l , t h e e x p r e s s i o n 

(41) JaA2(ex + f)2 + y + 3,4[£F2(x) + a7 + (aF2 (ar) + <?) (ea? + f)A] 

for £(F0r)) in (38) cannot be of the form R(x) + Q(x)A for any polynomials R(x) 
and Q(x) unless perhaps 3 = 0 . Thus9 for 3 ^ 0 , the expression (41) is lin-
early independent of the other terms in (38) and all those in (37), so that 
L = 0. On the other hand9 if 3 = 0 , then b = f = 0 by (39) and (40). Then 
(37) shows [F(G(x))] to be a polynomial, and (41) reduces to 

/aA2e2x2+ y[d + (ae2A2x2 + e)ex/ax2 + y] . 

For this to be a polynomial requires y = 0, contrary to 32 4" 4ay. Consequent-
ly, for 3 = 0, we still have L = 0. 

Equation (40) shows that no multiple of xpA occurs in [F(G)]2 for any 
p > 3. Since only Q5F5(x) in (38) contains such a multiple for p = 9, we have 
Q5 = 0. Because of this and the fact that Q3F3(x) alone in (38) contains a 
multiple of x5A, we have $3 = 0. This leaves (38) with no multiple of x3A9 so 
that the coefficient of x3A in (37), namely f($f + 2ye) , must equal 0. If 
f-+ 0, then eliminating e from 3/ + 2ye = 0 and 3e + 2af = 0 gives 32 = 4ay, 
which is forbidden. Therefore, / = 0. By (40) and (39), 3 = ^ = 0 also. 

For x0 a root of ax2 + $x + y9 
F[G(x0)] = F(0) = /7/ = 0 and G[F(x0)] = G(0) = /yd; 

since L = 0, we have /yd = 0. The condition 32 ^ 4ay implies y + 0. We sum-
marize our findings: 

(42) 3 = 0, b = 0, / = 0, d = 0, L = 0, Q5 = 0, £3 = 0, 9X = 0. 

These enable us to simplify (37) and (38) as follows: 

(43) [F(G(x))]2 = a3ahe2x1B + 2a
2a3e2(2ac + ya)xlh 

+ aa2e2(6a2c2 + 8ayae + y2a2)x12 

'+ 2aaoe2(5ayao + 2y2a2 + 2a2c2 + ayao)x10 

+ ae2(6y2a2c2 + 8ayac3 + a2c4 + ya2)^8 

+ ye2(bayae3 +. 2a2c2 + 2aac + ya2)^6 

+ y££2(ay£3 + 2ya + ao)xh + y2o2e2x2i 
(44) X2[£(Ffe))]2 = K2{a5a2e8x16 + 4atfa2yeVlt + a3£6(6y2a2e2 

+ 2aao + ya2)x12 + a2ye6 (4y2a2s2 +• 6aac + 3ya2)x1Q 

+ ae4 (ylfa2eLf + 6ay2ace2 + 3y3a2e2 + a2<?2..+ 2ayao)xQ 

+ yeh(2ay2ace2 + y3a2e2 + 2a2o2 + bayac)x6 

+ y££2(ay££2 + 2y2a£2 + ao)xh + y2c2e2^2}. 
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Comparing coefficients of x16
 9 x14, . ..9 x2, in order9 gives 

(45) a2 = a2e6 [because of (52) below] 

(46) lac = ya 

(47) I3a2c2 = e 4 ( 3 Y 2 a 2 e 2 + laao) 

(48) -.•'.llaao = e1* ( y 3 a 2 e 2 + 6 a 2 £ 2 ) 

(49) 41a 2 a 4 + 2aa<? - y 4 a V + 24a2yc2e t f + 5 a 2 e 2 e 2 

(50) 5a<32 + 2a = 4ayceIf + 5ac<22 

(51) a c 3 + 2a = 5ac?e2 

(52) Z2 = 1. 

Subtracting (51) from (50) gives 

(53) o1 = ye\ 

Eliminating a from (46) and (47) gives 

(54) 13c2 = ye\3ye2 + 1) . 

Eliminating c2 from (53) and (54) gives 

(55) yez = 4. 

With (45), (53)9 and (55) in mind9 we now discern four possibilities for 
given a and ei 

(56) a = ~ae3 and c = -2e 

(57) a = ae3 and o = ~2e 

(58) a = -ae3 and a = 2e 

(59) a = ae3 and c = 2e. 

For (56)9 we have 

F(x) = Xv^ - ae5x2 and £(#) = e 1 (ax3 + ox)vh - ae5x2 . 

For c()(x) = x/vae5 we find that cf)"1 [F(c|) (a?)) ] = 57/4 - x2 and9 using the assump-
tion c - -2g9 that 

cf)""1 [£(*<»)] = (e~6x3 - 2a?)A - *?2 . 

It is easily checked directly that these two functions are semipermutable iff 
eG = 1. 

Direct checking for semipermutability further shows that (57) gives F and 
G respectively equivalent _to U2 anc[ Uh9 while (58) and (59) give functions 
respectively equivalent to U2 and -f/4 as desired. 

JhojOHQM 7' Every odd SP chain under a constant sequence of the form 

dn(x) = vox2 + $x + y 
is equivalent to a Chebyshev odd chain {anUn(x)}, a2 = 19 n = 2s 4, 63 ... . 

Vtwofc Suppose {y2, Hh% ...} is an odd SP chain under d(x) = dn(x) as above. 
Let yn(x) = yn (x)d(x) . By Lemma 7a9 we may assume that d(#) = /4 - a?2. Since 
every odd polynomial 2/n (a;) of degree n - 1 is a linear combination of odd 
U^ (x) T s up to degree n - 1, we write 

.27„.0*0 = anf/„(x) + ̂  biUi(x)^ n > m >. 1, 



1980] FOUR COMPOSITION IDENTITIES FOR CHEBYSHEV POLYNOMIALS 369 

where 2\ = 0 for odd i . The rest of the proof follows that of Theorem 6 
exac t ly. 

TkzoKom St Suppose d(x) = /ax2 + $x + y where a + 0 and (32 + 4ay. There ex-
ists no complete SP chain under D. 

VHJOO^I Referring to the definitions given just before Lemma 6b, if such a 
chain {p1(x), p2(x) , . . .} exists, then the chain {p1 (x) , p3(#), . . .} is an even 
SP chain. The proof of Lemma 6b shows that we may assume §(x) = Kx + L in 
(22) and a = -1 and (3 = 0. Thus, we write 

:p1(x) = av-x2 + y and ~p2(x) = (2?# + <?)/-a:2 + y 

where as b3 and y are nonzero. Writing out the assumption 

lpx(pz(x))l2 = [ifpjp^x)) + I]2, 
we find the term 2K2a3bcx2v-x2 + y on the right side and all other terms in 
this equation linearly independent of this term,. Thus c = 09 so that 

[p1 (p2(x))]2 = a2b2xh - ya2b2x2 + ya2. 

It is easily checked that L = 0, so that 

[Kp2(p1(x)) + L] 2 = -a'4£2X2x4 + ya2£>2X2(2a2 - l)x2 

+ Z2y2a2Z?2(l - a 2). 

Comparison of coefficients of xh gives a2K2 - -1, which along with comparison 
of coefficients of x2 implies K2 = -1. But this leads to a contradiction 
since comparison of constant terms gives 1 = yb2 (K2 + 1). 
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