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Benfordfs law s t a t e s that the probabi l i ty of a pos i t ive integer having 1st 
d ig i t d i s given by 

Pr(j = d) = l o g 1 0 ( l + lid). (1) 
In terms of the cumulative probability distribution, (1) is restated as 

Pr(j < d) = log10d. 

This result was first noted by Benford [1] in 1938 and has since been extended 
to counting bases other than 10 as well as to certain subsets, called Benford 
sequences, of the positive integers. Geometric progressions or, more generally, 
integer solutions of finite difference equations are examples of Benford se-
quences that have received considerable attention in the literature, e.g. , [2]. 
This interest is due, in part, to the fact that the Fibonacci and Lucas numbers 
are obtained as solutions of the finite difference equation 

Xn+2 ~ Xn+1 + Xn• 

We refer the reader to [3] for an extensive bibliography concerning this and 
other aspects of the Ist-digit problem. 

Since the consideration of varying counting bases will be of concern to us 
here, we introduce the following notation. We write P?(j < d)b for the proba-
bility of j < d when numbers are represented as digits in base b _> 2. In this 
notation, Benford!s law states that 

Pr(j < d)b = ±ogbd, for d < b. (2) 

The purpose of this paper is to establish that, for the set of positive inte-
gers, (2) Is equivalent to the following "monotonicity statement": 

If b ± b \ then Pr(j < d)b _> Pr(j < d)b, . 

While this statement still makes sense for b < d <_ b \ we confine our attention 
to d <_ b» In so doing, it follows immediately that the monotonicity statement 
is implied by Benford*s law as given in (2). 

To reverse the above implication for the positive integers, we need two 
lemmas. Both of these results could be established via the functional equation 

Pr(j < a) + Pr(j < o) = Pr(j < ao), 

which is valid whenever the positive integers a and o as well as their product 
divide b. Instead of this approach, we present arguments based on a counting 
machine that randomly generates numbers in varying counting bases. The idea is 
as follows. It is clear that in binary (b = 2) the 1st digit must be 1. Con-
sequently, if we represent numbers in oct 1 (b = 8) where each digit is denoted 
by a string of three binary symbols, then the 1st digit is determined by simply 
ascertaining the length of the binary representation modulo 3. Since the pos-
sible lengths (mod 3) of the binary representation of a randomly chosen number 
are equally likely, we obtain some probabilities. More generally, we have the 
following. 

L&nma 1: Let msn _> 0, a > 2 denote integers. If randomly chosen positive in-
tegers are represented in base b = an, then 

Pr(j < am) = m/ns m <_n. (3) 

7k 
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VKQQfa We denote by b1bz ... bk the random number as represented in base 
b. Thus, 0 <_ bt < b for i = 1, 2, . . . , /c and b1 + 0. Rewrite each £^ as a1{ 

a2^ ... ani$ where the a^!s represent digits in base a. This yields a string 
of nA: digits each of which is less than a. Removing the 0 digits occurring at 
the beginning of this, we obtain the base a representation of the random num-
ber . Suppose this base a representation contains x digits. We solve the con-
gruence relation x = y (mod n) where 0 <_ 2/ < n. If y = 0, the 1st digit j (in 
base b) satisfies a71"1 <_ j < an = b. For any other value of y9 the 1st digit 
satisfies ay~x <_ j < ay. Since each value of y is equally likely, we obtain 

PvW1 <_ j < ay) = Pv{an~x < j < an) = l/n. (4) 

Equation (3) follows immediately from (4). This completes the proof* 
By a simple variation of the combinatoric argument used in the proof of 

Lemma 1, we next obtain a result that permits the comparison of the distribu-
tion of the 1st digit with respect to two different bases. 

Lemma. 2: Using the notation introduced above, we have 

Pr(j < d)b = mPr(j < d)b„ • 

VK.00fi t A random number represented by k digits in base bm is rewritten as 
a string of km digits in base b. As in Lemma 1, we delete all consecutive ze-
ros from the left-hand side of the km digits. This yields a base b representa-
tion of the number. For j < d9 in base b9 there are m equally likely possible 
values for the position of j in the base bm representation. Since the position 
of j is independent of its value, we conclude that the probability of j < d in 
base bm is l/rn times the corresponding probability in base b. This is equiva-
lent to the statement of Lemma 2 and completes the proof, 

To deduce Benfordfs law from the lemmas, we proceed as follows. According 
to Lemma 2, 

Pr(j < d)b = mPr(j < d)bm . (5) 

The monotonicity statement and Lemma 1 yield the inequality 

\ = PrU < d)d„ > PrU < d)b. > PrU < d ) ^ t l = ^ ^ (6) 

whenever 
dn<bm<dn+1. (7) 

By the euclidean algorithm, (7) is always satisfied by some n >_ 0 for any given 
values of b > d > 1 and m > 0, Combining (5) and (6), we obtain 

m III — , . -7N III 

— > Pr(j < d). > - — r - o 
n ~ b — n + 1 

Now let m->°°  and choose n so as to maintain the validity of (7). Taking loga-
rithms in (7), this implies that 

—-—- < log,, a < —. n + 1 — ^b — n 

To show t h a t rn/n-> logbd a s /77->°°9 we simply n o t e t h a t 

__ _ ____̂  = __( — \ < __ i o g , d - * 0 . 
n n + \ n\n + 1/ ~ n ^b 

This establishes (2). 
The proofs presented here rely heavily upon properties of the set of posi-

tive integers which are not shared by other Benford sequences. As such, it is 
worth commenting on the more general situation. By definition, any Benford se-
quence satisfies (2) and, as noted above, this implies the monotonicity state-
ment. The lemmas are also valid although the proofs given above are not. To 
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give a more interesting example, consider the geometric progression {ak} which 
constitutes a Benford sequence in base b if and only if a ^ bvlq (p, q integers). 
Setting a - 3 and br = 9, we obtain a subset of the positive integers which is 
not a Benford sequence. Moreover, Pr(j < 4)9 = 1 for the geometric progression 
{3^}. Since {3k} is a Benford sequence in base b = 8, we may apply Lemma 1 with 
a = 2,77Z = 2, n = 3to yield Pr{j < 4)8 = 2/3. A comparison of the above prob-
abilities for b = 8 and bf = 9 shows that the monotonicity statement is false 
for this example. 
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A Latin 3-cube of order n is an n x n x n cube (n rows, n columns, and n 
files) in which the numbers 09 1, 2, ..., n - 1 are entered so that each number 
occurs exactly once in each row, column, and file. A magic Latin 3-cube of or-
der n is an arrangement of n3 integers in three orthogonal Latin 3-cubes, each 
of order n (where every ordered triple 000, 001, ..., n-1, n-1, n-1 occurs) 
such that the sum of the entries in every row, every column, and every file, in 
each of the four major diagonals (diameters) and in each of the n1 broken major 
diagonals is the same; namely, hn(n3 + 1 ) . We shall list the cubes in terms of 
n squares of order n that form its different levels from the top square 0 down 
through (inclusively) square 1, square 2, ..., square n - 1 . We define a bro-
ken major diagonal as a path (route) which begins in square 0 and goes through 
the n different levels (square 0, square 1, ..., square n - 1) of the cube and 
passes through precisely one cell in each of the n squares in such a way that 
no two cells the broken major diagonal traverses are ever in the same file. 

The sum of the entries in the n cells that make up a broken major diagonal 
equals hn(n3 + 1 ) . A complete system consists of n2 broken major diagonals, 
where each broken major diagonal emanates from a cell in square 0, and thus the 
n2 broken major diagonals traverse each of the n3 cells of the cube in n2 dis-
tinct routes. The cube is initially constructed as a Latin 3-cube in which the 
numbers are expressed in the scale of n (0, 1, 2, ..., n - 1). However, after 
adding 1 throughout and converting the numbers to base 10, we have the n3 num-
bers 1, 2, . .., ns where the sum of the entries in every row, every column, 
and every file in each of the four major diagonals, and in each of the n2 bro-
ken major diagonals is the same; namely, hn(n3 + 1). 

In this paper, for the first time in mathematics, we construct a magic La-
tin 3-cube of order ten. In this case, the sum of the numbers in every row, 


