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Now we combine the fractions in the expression for f(x) to get 

(6) f(x) = P(x)/[x(x + 1 ) .... (x + 2/0] 

and observe that these negative roots are also zeros of P(x) 9 since the factors 
in the denominator of (6) cannot be zero at these values of x. But the degree 
of P(x) is 2k, Therefore, P(x) possesses one more zero, and this is then the 
r obtained in Section 2. Q.E.D. 

R&na/lki The branch of the curve, skipped in the above argument, then does not 
cut the #-axis at all. 

4, THE PS I FUhlCTIOhl 

The psi functions denoted by V(x) , is defined by some authors [2, p. 241] 
by means of 

(7) A _ 1 ( | ) = Y<*) + C> 

where C is an arbitrary periodic function. This is the analog for defining 
In (a?) in the elementary calculus by means of 

/ •%dx = In (a:) + c. 

We employ (7) to obtain 

f(x) = 2y(x +:fe) - y(x) ~~ y(x + 2k + 1). 

This provides us with an iteration method for the calculation of r, starting 
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A FORTRAN, BASIC, or ALGOL program to generate Fibonacci numbers is not 
unfamiliar to many mathematicians. A Turing machine or a Markov algorithm to 
recognize Fibonacci numbers is, however, considerably more abstruse. 

A Turing machine, an abstract mathematical system which can simulate many 
of the operations of computers, is named after A.M. Turing who first described 
such a machine in [2]„ It consists of three main parts: (1) a finite set of 
states or modes; (2) a tape of infinite length with tape reader; (3) a set of 
instructions or rules* The tape reader can read only one character at a time, 
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and, given the machine state and tape symbol, each instruction gives us infor-
mation consisting of three parts; (1) the character to be written on the tape, 
(2) the direction in which the tape reader is to move; (3) the new state the 
machine is to be in. 

A Turing machine can be described by either a diagram or a table. An ex-
ample of a Turing machine that adds two numbers is shown in Fig. 1. The fig-
ure shows both the table form and the diagram form of this Turing machine. 
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Fig. 1 

Let us now consider the tape shown in (1) 

(1) 1 1 b 1 1 1 # 

two represented by two ones, a blank space represented by b9 a three shown by 
three ones, and the <r which will mean the end of the information. The Turing 
machine shown in Fig. 1, when started in State A at the leftmost character of 
the tape in (1) will produce the following tape which shows a five, the sum 
of two and three. 

(2) ' 1 1 1 1 1 * £ 

The above table is read in the following way. The first row represents 
the states that the machine can be in, and the first column shows the charac-
ters that the machine can read. Let us, for example, look at the entry under 
State A and Character b. That entry, 1 R A9 like every entry, save one, con-
sists of three parts. The first part of the entry, 1, means change the char-
acter that is being read, b in this case, to a 1; the i?, the second part of 
of the entry, means move one space to the right on the tape; and the A9 the 
third part of the entry, says that the machine is to be in State A before 
reading the next character. Thus, if the machine is in State A and sees /f, 
the table says that it changes the <f to V3 moves left one place, and goes into 
State B. 

The above diagram, which is equivalent to the table, can be most easily 
explained by considering only a portion of it. The states of the 

Fig. 2 
machine are shown on the outside of the circles; the direction of the move is 
shown inside the next circle; and the character change is shown along the line 

This tape shows a 
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connecting the circles. Thus, Fig. 2 says that a machine in State A and see-
ing £, changes $ to <f, moves left one place, and goes into State B. 

The Turing machine diagram which appears in Fig, 3 exhibits a machine 
which will halt only when presented with a string of consecutive ones, whose 
length is a Fibonacci number. If the total number of consecutive ones is not 
a Fibonacci number, the machine will loop endlessly. A basic assumption is 
that the string of ones is bounded on each side by at least one zero. 
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Fig. 3 

The machine depicted examines the string of ones5 starting at the left 
end 31 and repeatedly builds larger and larger Fibonacci numbers within this 
string= It keeps track of its place, and of previously constructed Fibonacci 
numbers, by slowly changing the ones to a series of dollar signs and cent signs 
as it moves through the string of ones. Each time the machine reaches the 
states labeled B in Fig* 3, the segment of the tape which has been examined 
has been changed to a string of dollar signs with the exception of a cent sign 
in the Fn place (which is the place immediately to the left of the tape digit 
being read while in State B), and a second cent sign in the F . place. 

After the machine finishes constructing a Fibonacci number within the 
string of ones, that is, each time it reaches State B, it checks to see If the 
next digit on the tape is zero or not. If so, the number of ones in the ori-
ginal string is a Fibonacci number and the machine halts. If, however, the 
next digit is a. one, the machine attempts to build the next larger Fibonacci 
number within the string of ones (and, at this point, dollar and cent signs). 
If it encounters a zero on the tape before completing the construction of this 
next Fibonacci number, the machine goes into an endless loop* Thus, it halts 
only when the original number of consecutive ones Is a Fibonacci number. 
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As an example, suppose the initial input string was ...001111111100... . 
By the time the Turing machine reaches State B, the string would be changed to 
.. «00$$£$<flll00... with the first cent sign replacing the third "1" (3 being a 
Fibonacci number) and the second cent sign replacing the fifth f,ll?(5 being the 
next Fibonacci number), and the "tape reader" would be "reading" the first re-
maining "1" in the string9 as indicated. The next time around the major loop 
the string would be changed to .. .00$$$$(r$$ir00.. . (the first cent sign replac-
ing the fifth "1," and the second cent sign replacing the eighth "1" in the 
original string). Since the tape reader now reads a zero, the Turing machine 
moves to the Halt state and stops. 

A Markov algorithm provides an alternate but equivalent approach to hav-
ing a recognition algorithm for Fibonacci numbers. A Markov algorithm, like 
the Turing machine, operates on a string of elements over a given alphabet 
and consists of a sequence of rules which specify operations on the given 
string. Each rule ends with a number indicating the number of the next rule 
to be executed. If that rule is inapplicable, then the next rule in order is 
taken. The algorithm starts with rule number zero and each rule is applied 
to the leftmost occurrence of the element in the string. A rule ending with a 
period indicates a terminating rule, after which the algorithm is completed. 

The Markov algorithm given below operates in a manner similar to the Tur-
ing machine given above. Both the Markov algorithm and the Turing machine 
generate Fibonacci numbers inside the given string of l's and check to see if 
the constructed string and the given string are equal. 

MARKOV ALGORITHM TO RECOGNIZE FIBONACCI NUMBERS 

first 1 converted to a 

first a changed to 39 next available 1 to a 

nothing changed and Markov algorithm stops 

repeated step, afs to deltas 

gamma inserted at beginning of string 

gamma shifted right one through $'s 

delete gamma 

repeated step3 deltas to $fs 

dummy step—if rule 7 is nonapplicable, do nothing 
and skip to rule 3 

change next available 1 to an a 

delete gamma 

change first a back to a 1 

nothing changed and Markov algorithm stops 

repeated step, a's to lfs 

does nothing, endless loop which occurs if original 
string is NOT a Fibonacci number 

Lambda is the null symbol. Thus, rules 2 and 12 say "do nothing and stop." 
Rule 4 says to insert a gamma at the beginning of the string, and rule 6 says 
to delete the first gamma. 

This Markov algorithm works as follows: it converts a given string of 
l?s into a string of 3?s and afs that represent F?: and Fi + 1 within the string 
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of l's. At the end of a loop, the afs are changed to deltas and more lfs are 
changed into afs to correspond to the number of $fs which begin the string,, 
The deltas are then changed to (3!s. Thus, after one loop, the number of a's 
has changed from Fi to f i + 1 , and the number of (B?s has changed from Fi + 1 to 

If there are no more lfs to be changed at the end of a loop, the Markov algo-
rithm stops at rule 12, indicating that the original string of lfs was a Fibo-
nacci number. If, however, the string was not a Fibonacci number, the Markov 
algorithm jumps out of the loop in midstream of changing l's to afs and goes 
into an endless loop at rule 14 after changing the a?s back to l?s. 
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In studying the parities of the binomial coefficients, Gould [ 1] noted sev-
eral interesting relationships about the signs of the sequence of numbers 

< - n ( 8 ) , ( - D ( ? ) , . . . . ( - i ) ( 5 ) . 
Further interesting relationships may be discovered by converting each such 
sequence to a binary number, f(29 n), by 

& = o z 

and then comparing the numbers of the sequence f(2s 0 ) , f{29 1 ) , jf(2, 2) , . .. . 
The following conjectures were then proposed by Gould« 

ConjeatoAe 1: f(2s 2m - 1) - 22m - l. 

ConjucLtuAd 2: f(29 2 ) = 22m + 1. 

Conj'tctuAd 3; f(x9 In + 1) - (x + l)f(x9 In). 

We will prove these conjectures and present some related results. 
The following lemma provides a convenient recursive scheme for generating 

the sequence of numbers f(x9 0), f(x9 1) , .. . . We use the notation (.)* to 
denote the representation of a number to the base x. 
Lemma 7: The sequence f(x9 n) may be defined by f(x9 0) = 1, and if 

f{x, n - 1) = (an-1, ..., a0)x 

for n > 0, then 


