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CONGRUENCES FOR BELL AND TANGENT NUMBERS

IRA GESSEL
Massachusetts Institute of Technology, Cambridge, MA 02139

7. INTRODUCTION
The Bell numbers B, defined by

= x" sy
2 By = e
and the tangent numbers 7, defined by
2. n
E: ﬂfg— = tan &
n!
n=0

are of considerable importance in combinatorics, and possess interesting number-
theoretic properties. In this paper we show that for each positive integer n,

there exist integers a,, ays ..., a,_; and by, b,, ..., b,_; such that for all
m > 0,

Bron ¥y 1By t s taB, = 0 (mod n!)
and VS b, 1 Thopoy * oo + D0, 71 20 (mod (n - 1)!n!).

Moreover, the moduli in these congruences are best possible. The method
can be applied to many other integer sequences defined by exponential generat-
ing functions, and we use it to obtain congruences for the derangement numbers
and the numbers defined by the generating functions e®*®/2 and (2 - &%)~ 1.

2. THE METHOD

A Hurwitz series [5] is a formal power series of the form

i .

a, s
1

o ni

where the a, are integers. We will use without further comment the fact that
Hurwitz series are closed under multiplication, and that if f and g are Hurwitz
series and g(0) = 0, then the composition fo g is a Hurwitz series. In parti-
cular, gk/k! is a Hurwitz series for any nonnegative integer X. We will work
with Hurwitz series in two variables, that is, series of the form

2 GmnyT 4T

m,n=0

where the apm, are integers. The properties of these series that we will need
follow from those for Hurwitz series in one variable.

The exact procedure we follow will vary from series to series, but the gen-
eral outline is as follows: The kth derivative of the Hurwitz series

i x? . hd "
F@ =) anir is F®O@ =3 anay
n=0 n=0

Our goal is to find some linear combination with integral coefficients of

F@ s F1x)s vees FO()
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all of whose coefficients are divisible by n! (or in some cases a larger num-
ber). To do this we use Taylor's theorem

= K
fla +y) = kZo £ @

We then make the substitution y = g(z) and multiply by some series h(z) to get
® k
R@fle + @] = 3 O @B

If h(z) and g(z) are chosen appropriately, the coefficient of ~——z" on the
n
left will be integral. Then the coefficient of —-§T-on the right is divisible
by n!, and we obtain the desired congruence.

3. BELL NUMBERS
We define the exponential polynomials ¢,(t) by

2. on(®fy = T,
n=0 :
Thus
¢,(1) = B, and ¢,(t) = D 5, ktk,

k=0

where S(n, k) is the Stirling number of the second kind. We will obtain a con-
gruence for the exponential polynomials that for ¢ = 1 reduces to the desired
Bell number congruence.

We set "
f(x) = et(ez-l) = y;(bn(t)'z_'
Then
Fle +y) =exp [t - 1)] = exp [t(e® - 1) + t(e¥ - 1)e®]

1]

flz) exp [t(e¥ - D)e*].
Now set y = log(l + 3). We then have

0 k
Z f'(k)(x)[lOg%l! + )] - f(m)etzex_

k=0
Multiplying both sides by e-*#, we obtain
Z f(k)(x)e_tz[log(l + Z)] = f'(x)etz(e -1) E z”t”f'(x)(e - 1) (1)
Now define polynomials D, (%) by
- +
e tz [log(l Z)] an’ (t)n' (2)

[Note that D, , (¢) = 1.] Then the left side of (1) is

Y FRO@ YD (2 = a e Z}Dn K (E) i (E) - (3
k=0 n=0 :

m,n=0
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Since

[105(1 + z) 1% E: s(n, k)

where s(n, k) is the Stirling number of the first kind, we have the explicit
formula

() = 30 (-1 (%)etn - 3. 0t (4)
Since i=0
(em - 1) ZS(m s
we have men
I CHERD Ly S 4 Z( )s<m S ROTHON
m=0

hence the right side of (1) is

= nan S /m o .

IR J;)(j)soﬂ Fs Mo (). (5)

m n
Equating coefficients of %T'%T in (3) and (5) we have

Proposition 1: For all m, n > 0,

m

D Dy (D0 (0) = n17 3 (T)Sm = G, m)e; (1),
k=0 J

=
where

Doy (8) = _Z( DI (%)etn - 4, Red.

Now let D, i = D, x(1). Setting ¢ = 1 in Proposition 1, we obtain
Proposition 2: For m, n > 0,

n m
D DniBusr =t 2 (5)S0n = G, mB;, 6)
k=0

Jj=0

Dy, 1. = Z( DU LICEEAEOR

A recurrence for the numbers D, ; is easily obtained. From (2), we have

where

2": D kg’j_ _ g-allog( + z)]k
7,
hence n=k " «

D(uy 2) =), Dby = e™*(1 + 2)*. 7
From (7), we obtain nzk
gélwu, ) = —e~3(1 + 2)* +ue-?(1 + z)*7 1,

thus

(1+z) Mu,@ -(1 + 2)D(u, 2) + ub(u, 2)

= (W -1-2)Dw, z). (8)
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Z?‘L

1 in (8), we have

Equating coefficients of uk

Dpsr,x =Dp,x-1 = 0+ 1)Dy g — nDy_q 4 for m, k>0,

with Dy, o = 1 and D,,; =0 for Kk > n or kK < 0. Here are the first few values
of Dy, x:

Table 1

k 0 1 2 3 4 5 6 7
n
0 1
1 -1 1
2 1 -3 1
3 -1 8 -6 1
4 1 =24 29 -10 1
5 -1 89 -145 75 -15 1
6 1 -415 814 =545 160 ~-21 1
7 -1 2372 -5243 4179 -1575 301 -28 1

Thus the first few instances of (6) yield
Bpis t By + Bp =0 (mod 2)
Bn+sz + 2Bpy1 — Bp = 0 (mod 6)
Bnsy — 10Bpy3 + 5B, + B = 0 (mod 24).
If we set

n
D, () = Y D, xuk,
k=0

then from (7) we have "

D, =3 D)@,

j=0

where (W); = u(u - 1) ... (0 = § + 1). It can be shown that for prime p, D,(u)
satisfies the congruence Dp4+p(u) = (P - u = 1)Dy(u) (mod p). In particular,

Dp(u) = uP =y - 1 (mod p), and we recover Touchard's congruence [8]
Bn+p = Bn + Bn+l (mOd p).

Touchard later [9] 'found the congruence

Byp = 2B,y - 2Bp +p + 5= 0 (mod p?),
which is a special case of
Busap = 2Bypsr = 2Buyp + Buyy + 2B, + (p + 1)B = 0 (mod ),

but these congruences do not seem to follow from Proposition 2.
We now show that in a certain sense the congruence obtained from Proposi-
tion 2 cannot be improved.

Proposition 3: Let Ay, A1, A,, ... be a sequence of integers and let ag, a,,
...» a, be integers such that

< 4 _J0 if 0<m<n
kz::)aknﬁ—k_[vifm:n .

n
Let by, bys ..., b, be integers such that zz:bkAm+k is divisible by R for all
m > 0. Then R divides b,N. k=0
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Proog: Let .,
S =) a;bjA, s
Since i,§ =0
n n
S =Zai[z bin+J]’
R divides S. But t=0  9=0

n n
S = bj a; Az i = b,.N.
Jj=0 =0

Conollary: 1f for some integers by, by, ..., b,_,, we have
B +b B 4+ e + boBm =0 (moed R) for allm > 0,

m+n n=-1"m+n-1
then R divides nl.

Proof: Since S(n, k) = 0 if n < k and S(n, n) = 1, the right side of (6) is
zero for 0 < m < n and n! for m = n. Thus Proposition 3 applies, with b, = 1.

For other Bell number congruences to composite module, see Barsky [1] and
Radoux [7].

4. TANGENT NUMBERS

We have

tan x + tan ¥y
1 - tan x tan y

tan(x + y) = = tan x + sec?x tan" 'z tan™y.
Yy Y
n=1

Now set y = arctan z. Then

tan(x + arctan 2) = tan x + :E:z" sec’x tan” 'z, 9)
=1
and by Taylor's theorem, "
Ll k
rct k4
tan(x + arctan z) = Z tan(k)x-g—a—c—;'n—l—, (10)
k=0 :

where tan®x = Z— tan =x.
dxk

Now let us define integers 7(n, k) and t(n, k) by

tankx . xzn (arctan x)* xn
_—7<!— = EkT(TL, k)%—'- and —-—?'—‘—— = Ekt(n, k)-—-n!.
n= ne

Tables of T(n, k) and t(n, k) can be found in Comtet [3, pp. 259-260]. Note
that

d_ rankz _ sec? tan® "1z
dx k! (k - 1)1°

S0

- = ™
sec’x tan" "tz = (n - 1)! :Z: T(m + 1, n>ﬁT for n > 1.
m=n=-1

Then from (9) and (10), we have

© "L‘m Zn n
Z E,—E—,Zt(ﬂ,k)ﬂ’mk
k=0

m,n=0

o e
tan x +Z Z%z”m(n - DITm + 1, n).
m=1 n=0

xm n
Then by equating coefficients of ;F-ET-we have

Proposifion 4: For m > 0, n > 1,
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n
St T, =nl( - DIT(m+ 1, n). (11)
k=0

From Proposition 4, we obtain the congruence

Dt K)Tpyy =0 (mod nl(n - 1)1).
k=0

The first few instances are

T,oo =0 (mod 2)
Tnes = 2T, .1 = 0 (mod 12)

Toyy — 8T,,, = 0 (mod 144)
T,ys — 20T + 24T = 0 (mod 2880)

m+3 m+1

T, .o — 40T, ,, + 184T,,, = 0 (mod 86400).

Note that the right side of (11) is zero form < »n - 1 and n!(n - 1)! for
m=mn -1, Proposition 3 does not apply directly, but if we observe that

t(n, 0) = 0 for n > 0,

and write TJ for T,,,, then (11) becomes

n-1
Doty K+ DTy =nln - DT+ 1, n),
k=0

to which Proposition 3 applies: if for some integers bl, b

Tpon + b, T, + .o + DT

m+n m+l =

23 +ees b, 1, we have

0 (mod R) for all m > O,

+n -1
then R divides n!(n - 1)!.

Proposition 3 does not preclude the possibility that a better congruence
may hold with m > M replacing m > 0, for some M. 1In fact, this is the case,
since the tangent numbers are eventually divisible by large powers of 2; more
precisely, x tan x/2 is a Hurwitz series with odd coefficients (the Genocchi
numbers).

5. OTHER NUMBERS

We give here congruences for other sequences of combinatorial interest,
omitting some of the details of their derivation.
The numbers g, defined by

S0, - en
n=0

count ''preferential arrangements'" or ordered partitions of a set. They have
been studied by Touchard [8], Gross [4], and others.
If we set G(x) = (2 - e®) ", then

y 2" - et

Gl +y) = e . (12)
n=0 (2 - e’)”+1
Substituting y = -log(l - 2z) in (12), we have
Y non
Glx - log(1 - 2)] = (1 - 2)). 2z . (13)
n=0(2 - e”)"+1
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Proceeding as before, we obtain from (13) the congruence

n
e, Kgy, =0 (mod 2" 'nt), m > 0, (14)
k=0

where e¢(n, k) = [s(n, k)l is the unsigned Stirling number of the first kind,

= an _ [-log(l - 2)]*
2:¢2(n, k)n T
n=0
The first few instances of (14) are
Imez ¥ ey = 0 (mod 4)
Ines T 39mss t 29,1 = 0 (mod 24)
Imern T 0gpn,s + 11g,,, + 6g,,, = 0 (mod 192).

The derangement numbers d(n) may be defined by

= " e
Zd(”)n_v T -
n=0

It will be convenient to consider the more general numbers d(n, s) defined by

-

Dy (x) = Zd(n, s) (1 T

Then
-

D _ e ey - -y afn+ts -1 e~* (15
s @+ y) 1 -x° [1-y/-2)]° © ;g%y ( n )(1 - g)nts (1)

Multiplying both sides of (15) by e¥ and equating coefficients, we obtain

i(;) d(m + k, 8)

k=0

n!(” + 2. l)d(m, "+ s). (16)

In particular, we find from (16) that for prime p,
dm + p, 8) +d(m, s) =0 (mod p).
The numbers ¢ defined by
o xn
T(x) =, typr = @

n=0

x2
x+ 5

have been studied by Chowla, Herstein, and Moore [2], Moser and Wyman [6], and
others, and count partitions of a set into blocks of size one and two. We have
T(x +y) = T(x)T(y)e®¥; hence
T(y) T(x + y) = T(x)e®*Y. (17)
Let 2
_y-%.

W(y) =Y wly =T 7" = e .
n=0

Then from (17) we obtain "
n m
5 (2)onrts < 1 (2w
k=0

where we take t, = 0 for n < 0. We note that (18) satisfies the hypothesis of
Proposition 3, so we obtain here a best possible congruence.
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The numbers w, have been studied by Moser and Wyman [6]. From the differ-
ential equation W'(y) = -=(1 + y)W(y), we obtain the recurrence
Wypy = _(wn + m’)n—l)’
from which the w, are easily computed. The first few instances of (18) are
t

m+l T tm = mtm—l

m
tm+2 - 2tm+1 = z(z)tm-z
m
tmes = 3Cpas + 2t = 6(3)tm_3
m
8tper = 2tp = 24(4)@"_4.
A natural question 1is: To what series does this method apply? 1In other
words, we want to characterize those Hurwitz series f(x) for which there exist

Hurwitz series h(2) and g(2), with #(0) = 1, g(0) = 0,and g'(0) = 1, such that
for all m, n > 0, the coefficient of (x™/m!)z" in h(2)flx + g(2)] is integral.

t

m+ b4

- 4t

+

m+3

REFERENCES

1. Daniel Barsky. "Analyse p-adique et nombres de Bell." (. R. Acad. Sci.
Paris (A) 282 (1976):1257-1259.

2. S. Chowla, I.N. Herstein,"& W.K. Moore. "On Recursions Connected with Sym-
metric Groups I." Canad. J. Math. 3 (1951):328-334.

3. L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.

4. 0. A. Gross. "Preferential Arrangements.'" Amer. Math. Monthly 69 (1962):
4-8.

5. A, Hurwitz. "Ueber die Entwickelungscoefficientender lemniscatischen Func-
tionen." Math. Annalen 51 (1899):196-226.

6. Leo Moser & Max Wyman. "On Solutions of x4 = 1 in Symmetric Groups." Canad.
J. Math. 7 (1955):159-168.

7. Chr. Radoux. "Arithmétique des nombres de Bell et analyse p-adique." Bull.
Soc. Math. de Belgique (B) 29 (1977):13-28.

8. Jacques Touchard. "Propriétés arithmétique de certaines nombres recur-
rents.”" Ann. Soc. Sei. Bruxelles (A) 53 (1933):21-31.

9. Jacques Touchard. ''Nombres exponentiels et nombres de Bermoulli." Canad.
J. Math. 8 (1956):305-320.

FHHHH

A QUADRATIC PROPERTY OF CERTAIN LINEARLY RECURRENT SEQUENCES
JULIO R. BASTIDA and M. J. DeLEON
Florida Atlantic University, Boca Raton, FL 33431
In [1] one of the authors proved the following result.

Let u be a real number such that u > 1, and let {Z,},,o be a sequence
of nonnegative real numbers such that

= 2 2 2 2
xz, ., = ux, + Y(u? - D) (x; = xg) + (2, = ux))

for every n > 0. Then
Lpyp = 2UT, 4y = Tp

for every n > 0; and, in particular, if u, xy, x; are integers, then
%, is an integer for every n > O.



