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PASCAL'S TRIANGLE MODULO 

CALVIN T. LONG 
Washington State University, Pullman, WA 99164 

1. INTRODUCTION 

In "Mathematical Games" in the December 1966 issue of Scientific American, 
Martin Gardner made the following statement regarding Pascalfs triangle: "Almost 
anyone can study the triangle and discover more properties, but it is unlikely 
that they will be new, for what is said here only scratches the surface of a vast 
literature." But, of course, many new results have been discovered since 1966 and 
we present some here that were even suggested by Gardner's article, although the 
more immediate stimulation was the recent brief article by S. H. L. Kung [3] con-
cerning the parity of entries in Pascal's triangle. 

2. THE ITERATED TRIANGLE 

Consider Pascal*s triangle with its entries reduced to their least nonnegative 
residues modulo p, where p denotes a prime. Let k9 n, and m be integers with 0 <_ 
k <_ n and 1 <_m9 and let Anjfc denote the triangle of entries 

lnpm\ 
• \kpm) . 

Inpm + pm - l\ lnpm + pm - l\ 
\ kpm ) " " • " \kpm + pm - 1/ 

For fixed m, we claim that all those elements not contained in one of these 
triangles are zeros, that there are precisely p distinct triangles An,fe» and that 
these triangles are in one-to-one correspondence with the residues 0, 1, 2, ..., 
p - 1 in such a way that the triangle of triangles 

Ao,o 
Ai,o Ai,i 

A2,0 A2,l A2,2 

is "isomorphic" to the original Pascal triangle. In particular, we claim that 
there is an element-wise addition of the triangles hn,k which satisfies the equa-
tion A . . 

&n,k + &n,k + l ~ An + l.fc + 1 

where the addit ion i s modulo p . 
If we repeatedly i t e r a t e t h i s process by mapping the t r i ang les hn,k onto the 

residues i t follows tha t , modulo p , Pasca l ' s t r i ang le i s a t r i ang le that contains 
a Pascal t r i ang le of t r i a n g l e s , that in turn contains a Pascal t r i ang le of t r i a n -
g les , . . . , ad infinitum. For example, l e t m = 1 and consider Pasca l ' s t r i a n g l e , 
modulo 2. -

1 1 
1 0 1 

1 1 1 1 
1 0 0 0 1 

1 1 0 0 1 1 
1 0 1 0 1 0 1 

1 1 1 1 1 1 1 1 
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If we actually draw triangles around the An>k defined above, we obtain the follow-
ing array: 

And is we suppress the triangles with a single zero (with the points pointed down-
ward) and make the substitution indicated by the one-to-one correspondence 

0 ++ 1 

we obtain 
1 

1 1 
1 0 1 

1 1 1 1 

which is simply the original Pascal triangle modulo 2. Also, using element-wise 
addition modulo 2, we note that 

and similarly for the other "digit" sums. 
Iterating a second time (or, equivalently, taking m = 2) amounts to partition-

ing the original triangle as follows: 

This time, suppressing the inverted triangles of zeros and making the replacement 
indicated by the correspondence 
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we obtain 
1 

1 1 
1 0 1 

which is again the original Pascal triangle modulo 2. Also, again adding element-
wise modulo 2, we have 

as required by the Pascal recurrence. 
These results are summarized for any prime p in the following theorem. 

Th&QJiQJM 1: Let p be a prime and let An, k be defined as above for 0 <. k <_ n and 
1 <_m. Then Ansfe is the triangle 

(SXS) 
( X ) 0(1) 

(n\(pm - 1\ (n\fpm•- 1\ 
UA o / ' • • \k)[pm - i/ 

with all the products reduced modulo p and 

An,/< + ^n,k + l = An + 1,H1 

where the addition is element-wise addition modulo p. Finally, every element in 
Pascal's triangle and not in one of the An,k is congruent to zero modulo p. 

VKQOfc The elements of Anjk are the binomial coefficients 

( & : : ) • » ^ - < p - . 
and, by Lucas' theorem for binomial coefficients [1], [5, p. 230], 

This gives the first assertion of the theorem and also implies the second, since 

(npm + r\ ( npm + r \ _ /n\/2»\ / n \/r\ 
\kpm + s/ \(k + l)pm + s/ " \k)\s) \k + l/W 

• (i: DO 

Finally, the entries of Pascal's triangle not included in any of the An>k form 
triangles S}n>k of the form shown below. 
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( nVm \ ( nVm \ 
\kpm + 1/ ' ' ' e 8 \kpm + pm - 1/ 

lnpm + pm - 2 \ 
\/cpffl + pOT - 1/ 

w i t h t h e e lements reduced modulo p . Thus, every element i n VHtk i s of t h e form 

< s .<. p 

and, aga in from Lucas1 theorem, 

/np- + r\ 

torem, 

since p < s. This completes the proof. 

3. A GREATEST COMMON DIVISION PROPERTY 

In this section, we need the following remarkable lemma [4, p. 57, Prob. 16] 
which is readily derived from Lucas? theorem. Note that by pf\\n we mean that pf\n 
and pf+1\n. 

Lemma: Let p be a prime and let n and k be integers with 0 <L k <_ n. If P^llliw » 
then / is the number of carries one makes when adding k to n - k in base p. 

We now prove an interesting greatest common divisor property for the binomial 
coefficients in the triangular array 

(T) c : j 
m - ••(:•:{) 

/277Z - 2 \ 

\m - 1 / 
which we denote by Vw. 

Th<LOH.QJtr\ 2: Let p be a prime, let <f be the greatest common divisor of all elements 
in Vm, and let D denote the greatest common divisor of the three corner elements 

(TM.:i).-"C--i2)' 
Then, (i) d = D = p if m = p 9 

(ii) d = p and D = p if ??? = pa, where a > 1 is an integer, and 
(iii) d = 1 and D - m for all other integers w > 2. 

PJWOp (i) Since (^ = (P^ = p and d|Z?|(^), it suffices to show that p Id-

Consider an arbitrary element 

(p;v < . £ : £ p - 2 , k + l < . ? z < _ p 
of Vp. By Lucas ' formula 
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since k < h. Thus, p|<2|Z?. On the other hand, p||( a-i)» since the only carry you 

make in adding pa~1 to pa - p01*"1 = (p - l)pa_1 is just 1. This implies that d\p9 

since k < h. Thus, p divides every element of Vp and so p\d as required. 

(ii) Here the elements of VpQ are the form 

{pCL h k ) 9 °  - k - p - 2 > k + l ± h . < _ p - 1 

and, again by Lucasf theorem, 

e v *) = ( ? ) = • <-»>• 
: hand, p\\(K-i\ , 
l)pa~1 is just 1. 

and hence that d - p. Furthermore, 

since 
a-l 

P°  " 1 = S (P " ̂ ^ 
' £ - 0 ' 

so that you carry precisely a times when adding pa - 1 to pa - 1 in base p. 
Therefore, D ~ pa as claimed. 

(iii) In this case, m is not a. prime power. Since 

we have that D\m. Thus, to show that D - m9 it suffices to show that m\D. This 

will clearly be the case if we show that ml _ ) and for this it suffices to 
show that • 

(2m - 2\ - ̂  . ̂  

where 

m = n p.°" 

is the canonical representation of m. Let m - kp 9 where k is an integer and p\k. 
Since 

a-l 

kpa - 1 = (k - l)pa + pa -' l = (fc - l)pa + ]T (p - l)p , 

it is clear that the number of carries made in adding kpa - 1 to kpa - 1 in base 
p is at least a. Therefore, 

and the result follows. 

We now show that d = 1. Since 

(2kpa - 2\ 
\?cpa - 1 / 

i t suffices to show that 
. / m \ 

1 < i < r. 
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If we fix i-9. we may write m = hp\l with h > 1 and (h, pt) = 1. The question will 
then be settled if we show that there are no carries when adding p?* to m - p ?7: = 
(h - l)pioti in base p. Since the only nonzero digit in the representation of^p?* 
to base p^is the 1 that multiplies p?s we need consider only the digit that mul-
tiplies pfi in the base pi representation of (h - l)p?*. Indeed, it is clear that 
we have a carry if and only if h- 1 = qpi + {pt - 1) for some integer q. But this 
is so if and only if h= (q+l)pi9 and this contradicts the fact that (h9 p.) = 1. 
Thus, ^ 

for 1 <. i <_ r9 and the proof is complete. 
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ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET 

HELMUT PRQDINGER 
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1. PARTITIONS OF n IN FIBONACCI SETS 

Let n: = {1, 2, ..., n]« It is well known [1] that the number of sets A C n9 
with 

(1) i , j e A, i f j implies \i - j | _> 29 
is the Fibonacci number Fn+1. (FQ = F1 = I, Fn + 2 = Fn+1 + Fn.) 

A set A C n with the property (1) will be called a Fibonacci set. 
A partition of n is a family of disjoint (nonempty) subsets of ~n whose union 

is "ft. The number of partitions of n Is Bn9 the nth Bell number [2], 
In this section the number Cn °f partitions of ~n in Fibonacci subsets will be 

considered. There exists an interesting connection with Bn. 
ThtOKOm It Cn = Bn_1. 

Vnooj* This will be proved by arguments analogous to Rotafs in [2]. First, 
the number of functions f : n •+ U (JJ has u elements) with f(i) ^ f{i + 1) for all 
i is determined: for f(l) there are u possibilities; for f(2) there are u - 1 pos-
sibilities; for /(3) there are u- 1 possibilities, and so on. The desired number 
of functions is u(u - l)""1. 

These functions are partitioned with respect to their kernels. (Note that ex-
actly those kernels appear which are Fibonacci sets!) 

(2) 23(w)»(TT) = " (" " 1)" X. 


