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In this paper, some new Fibonacci and Lucas identities are generated by
matrix methods.

The matrix
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satisfies the matrix equation
RS - 2R -2R +1 =0
Multiplying by R" yields
n+3 n+2 n+l n

(1 R - 2R - 2R + R =0

It has been shown by Brennan [1] and appears in an earlier article [ 2]

and as Elementary Problem B-16 in this quarterly that
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where F is the nth Fibonacci number.

By the definition of matrix addition, corresponding elements of Rn+3,
Rn+2, Rn+1 and R" must satisfy the recursion formula given in Equation (1).
That is, for example,
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2 _ om?  _ o 2 -
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and
FrsTnia ~ 2P Fn+3 - 2R i Tt FpFhg =0

Returning again to
R -2R”-2R+1 =0 ,
this equation can be rewritten as
R+I¥ = R+ 3R2+ 3R+ I =5R(R+1I)

In general, by induction, it can be shown that

2n+1

(3) RP R + 1) = 5"R™PR + 1

Equating the elements in the first row and third column of the above matrices,

by means of Equation (2), we obtain
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It is not difficult to show that the Lucas numbers and members of the

Fibonacci sequence have the relationship
L2 - 5F2 = (-1)"4
n n :

Since also

Zn:rl 2n+1 .
Z )P =0,
i=0 '
we can derive the following sum of squares of Lucas numbers,
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2n+l on + 1
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i=0
by substitution of the preceding two identities in Equation (4).
Upon multiplying Equation (3) on the right by (R + I), we obtain

2n+2

) RPR + 1) = 5"R™P (R + 1?

Then, using the expression for Rr" given in Equation (2) and the identity

L = Feer ™ Pl
we find that
F2n—1 F2n F2n+1 1 0
n+1 n _ :
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Finally, by equating the elements in the first row and third column of the ma-

trices of Equation (5), we derive the two identities
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By similar steps, by equating the elements appearing in the first row and
second column of the matrices of Equations (3) and (5), we can write the addi-

tional identities,
2n+1

2n+1 n
i Fi—1+p Fi+p =5 F2(n+p)
i=0

and

202 o+ 2 .
Z o Fitep Fiep = % Domipp

i=0 !
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TWO CORRECTIONS, VOL. 1, NO. 4

Page 73: In proposal B-26, the last equation should read

(%)

B x) = x+1) Bn—l(x) + bn—l

n

Page 74: In proposal B-27, the line for cos n¢ should read

cos ng = P_(x) = Ay SN = [+ 2)/2]
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RENEW YOUR SUBSCRIPTION!!!



