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3. THE P MATRIX — RECURSION RELATIONSHEIPS FOR
PRODUCTS AND POWERS OF u .

A convenient technique [ijor generating several basic Fib-

onacci identities lies in the use of the second order matrix

01
(3.1) ) —_~< )
11

The technique is based upon the fact thatthe characteristic poly-

nomial of P 1is the characteristic polynomiai of the second-order

recurrent relation u =u +u defining the Fibonacci sequence,
n+l n n-1
i.e.,
2
(3.2) |xI - Pl =x“-x-1

From (3.1) and (3. 2) we have at once

and

We shall show that the matrix P of (1.1) provides a generalization
of (3.1) relative to the n-th powers of u,. Indeed, (3.1) is Q1 of
(1.1), and ¢°1(x) in (2. 20) compares with (3. 2)..

Theorem I (due originally to Jarden [3] )
Let

be the element by element product of n (not necessarily distinct)

177
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se(iuences % h‘l % each of which satisfy the relation

) J =) J
(3.3) pl,, = Bl +nl

Then i br % satisfies the recurrence relation
¢n{b} = 0

for ¢n defined in (2.19).

By virtue of (2.18) it is sufficient to show that the determinant
Dn{ b} vanishesfor n+l consecutive members of the sequence {bf}.-r
Examining Dn{a} we note that we can express the element in  the

r-th row and s-th column by

n n £ -1
rtl T Yr41®1 T UpRor M ST
ntl-s s-1

U ul , if s#1

Hence the determinant is zero for the sequence (a} if we can find a

solution %AS% which is independent of r and satisfies

n
(3.4) a =u a +u?a + Z A ntl-s s-1.

0 s Yr+l Uy ’
s=2

n
r+l r+l171
that is to say, some method of annihilating the first column by adding

a linear combination of the remaining columns. We take

n
- - J
(3.5) dr4l T br+l = I hr+l
j=1
Using the well known formula for general sequences of the type (3. 3)

h =u h, +u h
r

r+l r+171 0

in (3.5) and exgcanding, we have
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n
a = I (u hj+uhj)
r+l71 r o’ ’

r+l
j=1

nt+l-s s-1
Hs u. u. .

n n
.| J n J
Bl T Upp MRy Tu Tk
j=1 j=1 s=2

™M B

+

Clearly, HS is a combination of the h'g) and h{ » and independent of
r. We have satisfied (3. 4) and the proof is complete.

Theorem I establishes the recurrence formulae ¢n{a} =0 of
(2.19) as generators for the n-th powers and n-th order products of
the sequence %hrg of (3.3), and in particular, products of the Fib-
onacci sequence 3 u g of (2.2). _

There remains to be constructedthe link between Pn and these

recurrence formulae. We prove

Theorem II

Proof,

Since P_ of(1.1)is related to Q_ of (2.6) by P_= E Ql g}
with E = E_l being a matrix with ones on the counter diagonal and
zeros elsewhere, Pn and Qn are similar and hence satisfy the same
polynomial equations. It is sufficient to show that qbn(Qn) = 0.

First, each element of the matrix Bn (2.4) is an element

+1,1
of a sequence of the type

n
b= I th, defined in (2. 8).
=1
Construct the sequence br’ br+l’ e br+n+l by choosing

the corresponding elements from the matrix sequence Bn+1 i
. ,

Bn+l,i+l’ ces Bn+1,i+n+1' By Theorem I, ¢n{b}= 0. Since this

is true for any element of B . it is true for the entire matrix.

ntl, i
We have
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(3.6) ¢n{B} = 0 identically.

Writing out the summation in (3. 6),

nt+l

r n+l B
(3.7) z (1) Sr[ r ] Bn+1,n+l—r—i Y
r=0

The matrix Qn may be used (as in (2.5)) to shift the index of B so

that
_ ntl-r-i _ -intl-r
(3.8) By, ntl-r-i = Pnt1,0 % = B, 0?9
Using (3. 8) in (3.7) we have
n+l
-1 r n+l n+l-r
Bn+1’0 Ql’l 2 ('1) SI‘[ r ] Q = 0
r=0

Now B is never singular, (2.9), nor is Q, (2.7), so that

n+l
T n+l n+l-r
z (1's ["'] e -0

r=0

which is to say, by (2.20),
¢n (Qn) =0

Theorem II is implied more directly by Theorem I after having

established the following representations for erlz
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2u u u u + uZ
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etc., where the bordering elements of Q; build up in the manner

suggested by these cases and the internal elements, while being more

complicated in structure,

ducts of u's.

nevertheless are sums of n-th order pro-

Before stating the final theorem we will examine the special

case used earlier in terms of what we now know.

matrices

(where the index 1 on B indicates

[
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the indices of the first row) and
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We have the polynomial

(3.9) $(x) = x° - (5x" +15x> - 15x° - 5x + 1)

from (2.21) with n =4 and the corresponding recursion relation

(3.10) b = 5b_., +15b_

n+5 ntd -15bn - 5b +b

+3 +2 n+l n

which is satisfied by any sequence whose members are the element
by element product of four Fibonacci sequences — in particular it is
satisfied by the sequences formed by extending each column of Bl
ad infinitum, the index of each sequence increasingdownward. In view

of this fact we construct the matrix

0 1 o0 0 0
0o o0 1 0 0
(3.11) E=1|0 0 0 1 o0
o 0 0 0 1
|1 -5 -15 15 5 |

whose obvious property is that of transforming any column vector

bn bn+1
bn+l bn+2
bn+2 into bn+3
. bn+3 bn+4
bn+4 bn+5

if the elements of the vector satisfy the relationship (3.10). E has
the property, then, that

(3.12) ’ EB, = B
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It is not difficult to show that the characteristic polynomial of (3.11)
is

x1- E| = ¢,0)

4(
for ¢4(x) defined in (3.9). Combining (3. 12) with the property (2. 5)
of Q

and B1 is not singular, hence Q, andtherefore P, is similar to, and
has the same characteristic polynomial as E.

The preceding example illustrates the proof of the final

Theorem III
The (n+l) X (ntl) matrix Pn of (1.1), formed by imbedding

Pascal'striangle ina square matrix, has the characteristic polynomial
n+l
(3.13) |XI _ Qn| - (_l)r (_l)r(r—l)/Z I:n-ir-l] Xn+1-r

r=0

where [1;] is a generalized ''binomial coefficient'' defined by

2] - 2 lerCleen ] .y

Furthermore, the polynomial (3.13) is the same polynomial which
characterizes the recursion relation for the element by element pro-

duct sequence of any n sequences each of which satisfies the Fib-

onacci recurrence relation u =u_+tu .
n+l n n-1
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THE GOLDEN CUBOID
H. E. HUNTLEY
The problem of finding the dimensions of a cuboid (rectangular
parallelopiped) of unit volume, havinga diagonal 2 units in length leads
to an interesting result.

Suppose the lengths of the edges are a, b and c. Then

(1) a*b-c=1 and @Y @ +b2+c% = 2

If only the ratios of these lengths are required, we may, without
loss of generality, write b =1, provided that a * ¢ can have the value
unity and that 9_2 + 9_2 = 3. Now it is evident from Fig. 1, which re-

presents the base of the cuboid, that

the maximum value of a * ¢ occurs base
when a = ¢ = V3/2, so that a - ¢
mayhave any value from zero to 3/2.
Substituting ¢ = 1/a from (1) in (2), we have
a2+—1—2 = 3 i.e., a4— 3a2+1 = 0, whence
a
3+
aZ: ‘/—5-:l+¢=¢~2,

2
so that a = ¢, the Golden Section. The positive solution of the equa-

. 2 : .
tion x - x-1=0 andthevalue of un/un_1 as n-—eo, where u is

a member of the Fibonacci Series.

From (1)it followsthat ¢ = ¢ ~, so that the required ratios are
a:bic = ¢:1: o=l Itis easily verified that 02 41 + ¢ 2= 4,
Continued on page 240.



