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The present paper can be considered as an extension of two previous papers in 
which the properties of the following function were discussed (see [1] and [2]): 

(1) F(x9 y) = x^^ 

where an infinite number of exponentiations is understood. Equation (1) is the 
function specifically studied in [2]9 whereas in [1] we considered the simpler 
function 

(2) f(x) E F(x9 x)9 

i.e., the case of Eq. (1) where x = y. For both Eqs. (1) and (2), the ordering of 
the exponentiations is important, and for Eq. (1) and throughout this paper, we 
mean a bracketing order "from the top down," i.e., x raised to the power y9 fol-
lowed by y raised to the power x^, and then x raised to the power y^xy\ and so on, 
all the way down to the x which is at the lowest position of the "ladder." 

In the present paper, we study the properties of a function which is obtained 
by forming an infinite sequence of roots. We have restricted ourselves to a sin-
gle (positive) variable x9 i.e., the analogue of Eq. (2). We will call this func-
tion $(x)9 and it is defined as follows: 

(3) <|>(a?) = '^ / x 9 -

where an infinite number of roots is understood. The bracketing is again from 
"the top down," i.e., we mean /x9 followed by the i/ST-th root of x9 which can be 
written as E,(x), followed by the root and so on, down to the lowest x in the 
"ladder." 

From Eq. (3), it can be see that we have: 

(4) $(x) = x*^ = i/x9 

provided that the sequence (3) has a nontrivial limit. From Eq. (4), we obtain 
the equation: 

(5) Hx)Hx) = x. 
Values of (j)(#) were calculated by means of a simple program embodying the se-

quential operations of Eq. (3) on a Hewlett-Packard calculator. In this manner, 
we have obtained the graph of Figure 1, in which $(x) is shown as a function of x. 
We note that for x < e~1/e

9 i.e., x < 0.692200..., <f>(a?) = 0, and at x = e~1/e
9 <|>(a0 

has the value l/e = 0.36788. Indeed, for cj) = e"1
9 Eq. (5) gives 

^ » e-itt/'> = g-i/*= x , 

The reason for the abrupt decrease of $(x) to zero below x = e~1,e is illustrated 
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in Figure 2, in which we have plotted (j)* as a function of <j). It can be seen that 
(j)̂  has a minimum value of e~lje which is attained at <f) = l/e. Indeed, the deriva-
tive dfy^/dfy is zero at this points as can be seen from the following equation: 

dfyb _ dexp (([) log (j)) 
(6) '(log (J) + 1), 
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Fig. 1. The curve of the function <f)(x) as a function of x. 
For X < e~1/e = 0.6922, (J) (x) = 0. At X = e~1,e , 
§(x) = 1/e = 0.36788, so that §(x) has an abrupt 
discontinuity at x = e'1,e . For x > ee = 15.1542, 
the sequence $(x) defined by Eq. (3) converges to 
two different values ^>1(x) and $2(x) , depending on 
whether the number n of Xss is odd or even, respec-
tively. This property can be called "dual conver-
gence" and has been described previously in [1-3]. 

Thus, for x < e~1/e , Eq„ (5) has no solution with $(x) > 0. At <j> = 0, the 
derivative dfy^'/dty -> -° °, since log c|> -»• -° °. We also note from Figure 2 that for 

-l/e < 1, there are two values of (j) for a given value of Thus, we can 
divide the curve of Figure 2 into two branches, the one to the left of (f) = l/e, 
and the other to the right of (f) = l/e. The branch to the right of (j) = l/e9 i.e., 
the branch with (j) > l/e, gives the value of (j) for a given x9 as obtained from Eq. 
(3). The meaning of the other (left) branch will be discussed below. We note that 
for cf> > 1, there is a unique value of <J) for a given (J)-* = x9 as shown in Figure 2. 

Returning now to Figure 1, we note that for x > ee = 15.1542..., we have a dual 
convergence of Eq. (3) , namely a convergence to two values $1(x) and (J)2(̂ ) depend-
ing upon whether the number n of x1s in Eq. (3) is odd or even. This property of 
dual convergence has been discussed previously in connection with the function 
f(x) = F(x9 x) of [1] for x < e~e = 0.06599. The concept of dual convergence was 
actually introduced in an earlier paper by the authors [3] which was circulated as 
a Brookhaven Informal Report [4]. 

At the point x = ee
9 <$>(x) has the unique value <$>(x) = e, which is marked on 

the ordinate axis of Figure 1. For very large x9 it is easy to show that $i(x) 
approaches x9 whereas $2 0*0 approaches 1. In order to illustrate this property, 
we consider the choice x = 10,000. N o w ^ = 10,000 °'0001 = 1.000922, and the next 
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step calls for the calculation of 

followed by 
10,000 1/1.000922 

9915.53, 

1050001/9915'53 = 1.000929. 

The actual values to which the inf in i te sequence of Eq. (3) converges for x = 109000 
are: 

(ĵ Gc) = 9914.85 and (f)2(x) = 1.0009294. 
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Fig. 2. The function (j)̂  as a function of (J) for (J) in the region 0 < (f) < 1.25. 
This function is of interest in connection with Eq. (5) , according to 
which cj)* = x. We note that the minimum value of <J>* is e~1/e = 0.6922 
and is attained at $ = 1/e. Thus, for x < 1, the function $$ can he 
considered as having two branchesr the one to the left of $ = 1/e and 
the one to the right of § = 1/e. The right-hand branch gives the 
value of (J) as a function of x = (f)4>, e.g. > for x = 0.8, we have (p(x) = 
0.7395. The left-hand branch gives the value of Nm±n , as explained 
in the text [see Eqs. (12)- (18) ] . Thus, for values of x between e 
and 1, §N(x) = §(x) , provided N _> N min . 
an example, Nm±n (x = 0.8) = 0.09465. 

For N < Nn Ax) 0. 

-1/e 

As 

Obviously, from the definition of <$>i(x) and (J)2(#), we have the relations: 

(7) b±(x) 2(x) 
,(a?) 

Incidentally5 the equation $(x) 

* i ( * ) 

<K*) x continues to have a solution for x > ee. 
for x > ee, but this solution does not give the values of $(x) to which the se-
quence (3) approaches by dual convergence. As examples of values of $1(x) and 
cj)2(x) for x > ee

s we may cite: 

for x 
for x = 

= 20: 
100: 

01(2O) = 7.28025 
^(100) = 76.3799 

(f2C20) = 1.50907; 
f)2(100) = 1.06215. 

The occurrence of x = e~1/e and x - ee as limiting values for (J)Or) and the 
similar occurrence of x = elfe and x - e~e as limiting values for f(x) suggests a 
recriprocal relationship between the functions $(x) and f(x). This conjecture is 
strengthened by the fact that the values of f(x) and $(x) at corresponding points 
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are the reciprocals of one another. Thus, we have: 

(8) 

(9) 

(10) 

<j>0c -1 /e ) = He, fix , 1 / e ) = e, 

)(x = ee) = e, fix = e-e) = lie. 

We now prove the following r e l a t i on between <j> (x) and fix) : 

f ( l / x ) 
Thus, the region of dual convergence of <J>(#) for x > ee corresponds point-for-point 
to the region of dual convergence of f(x) for x < e~e

 9 in which f(x) has two 
branches f±(x) and f2(x)9 which approach the limiting values f± (x) -> x as x -> 0 
for an odd number of xTs in Eqs. (1) and (2), and f2(x) -> 1 as x -> 0 for an even 
number of x's. 

In order to prove the relation of Eq. (10), we simply note that: 

(11) >(*> = 1 /I W 
where the bracketing is "from the top down" the ladder, as in all of the present 
work. Thus, all of the arguments given for the single or dual convergence of f(x) 
in [1] apply to the present case, provided that x > 0. 

We now wish to consider a generalization of cf)(x) to be denoted by $N(x)9 anal-
ogously to the generalization of f(x) to the function fN(x) of [2], Thus, we de-
find <$>N(x) as follows: a 

/x 

(12) V*> /x9 

where N is an arbitrary positive quantity 
we can rewrite Eq. (12) as follows: 

By the same procedure as in Eq. (11), 

(13) \>N(x) = x] 
1 .• 

= 1 IJ 1/N\X ) 

[see Eq. (26) of 2], For values of x > 1, we have l/x < 1, and as shown in [2, 
discussion following Eq. (29)]«» we have 

(14) fl/N\X) f\x) 
for all values of N9 and correspondingly: $N(x) = $(x). This statement applies 
both to the region 1 < x ± ee

9 where §(x) is single-valued, and to the region x > 
ee

9 where we have dual convergence. In this case: 

l.JT5^ 
(x) and .,/*> >(x). 

The situation is different when x < 1. As shown above, $(x) is nonzero only 
in the limited region extending from x = e~1/e = 0.6922 to x = 1. The correspond-
ing values of l/x are larger than 1, and hence fj^/^/x) maY diverge, depending on 
the value of N9 giving <pN(x) = 0 . _ 

It has been shown in [2] that, for the function f-(x) 9 the upper limit on N is 
given by the root of the equation 

(15) X? f, 
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where we must choose the upper branch of the curve of / vs. ~x9 i.e., the branch 
for which f > e9 which we have denoted by_/(2) [2, see the discussion following 
Eq. (28)]. We can therefore write f(2)_ = N. Now in view of Eq. (13), the lower 
limit on N for $N(x) is given by N = 1/N9 and the value of x is given by x = 1/x. 
Upon inserting these substitutions into Eq. (15), we obtain: 

(f -*• 
Upon taking the reciprocal on both sides of this equation, we find 
(17) x1/N = N9 
whence 
(18) x = N*. 

This equation for N is identical to the equation for <J)(ar) given in Eq. (5). Since 
N > e by the previous argument, we find N < l/e9 and therefore the relation of Eq. 
(18) for N, i.e., Nm±n (minimum value of N) corresponds to the part of the curve 
of (J)* = x which lies to the left of the point <j> = l/e. Thus, the values of Figure 
2 for <j> < 1 give both the value of $(x) (right part of the curve) and the value of 
^min (#) (left part of the curve), such that for N < Nm±n9 the function <pN(x) of Eq. 
(13) is zero, even though the simple function <$>(x) (with an x on top of the lad-
der) is convergent and nonzero, and in fact <$>(x) 2. 1/^-

In .connection with the iterated root-taking which is implied by Eq. (3) for 
the function §(x)9 we have considered another possible function obtained by itera-
tion, namely: 

(19) R(n9 a, x) - v a + x y a + xy .. . 

Assuming the convergence of Eq. (19), we find: 

(20) Rn = a 4-' xR. 

For the case n- = 2 (repeated square roots), Eq. (20) can be solved directly, with 
the result: 

(21) 7?(2, a, x) = | + (w Also, for the special case that a = 0 in Eq. (19), we obtain, for arbitrary 
(positive) n: 

(22) Rn = xR9 
which gives 
(23) R(n9 0, x) = x1Kn~1\ 

If, furthermore, we take n = x9 we obtain: 

(24) R(x9 0, x) = xinx~1). 

I t can be e a s i l y shown t h a t the f u n c t i o n R(x9 0 , x) d e c r e a s e s mono ton ica l ly from 
~~l/x nea r x = 0toR = e a t x = l and, f u r t h e r , t o R = 1 a s x •> °°. 

In Eq. ( 2 3 ) , we n o t e t h a t i?(2, 0 , x) = a?, i . e . , 

(25) X = yj tf \ X \. . . . 

Finally, we wish to show the connection of i?(2, a, a:) to the continued frac-
tion FQ (a9 x) defined as follows: 

(26) F^a' X) = X + ~ — ^ * 
X H ; 

X + . . . 
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From Eq. (26), we obtain the following equation determining the value of 
Fc(a9 x)i 
(27) Fc - x = f-9 

whence: 

(28) F2 - xFc -a = 0. 

This equation is identical to the one which determines the continued square root 
i?(2, a9 x), and correspondingly 

(29) Fe{a9 x) = i?(2, a, x). 
An interesting result of Eq. (28) is that in the limit that x -> 0, we find 

(30) llm Fc(a9 x) = a*-, 

which does not seem obvious from the definition of Fc (a, x) by Eq. (26). 

REFERENCES 

1. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentia-
tion—I." The Fibonacci Quarterly 18, no. 4 (1980):341-47. 

2. M. Creutz & R. M. Sternheimer. "On the Convergence of Iterated Exponentia-
tion—II." The Fibonacci Quarterly 19, no. 4 (1981):326-35. 

3. M. Creutz & R. M. Sternheimer. "On a Class of Non-Associative Functions of a 
Single Positive Real Variable." Brookhaven Informal Report PD-130; BNL-23308 
(September 1977). 

4. We note that the function f(x) has also been considered by Perry B. Wilson, 
Stanford Linear Accelerator Report PEP-232 (February 1977), and by A. V. 
Grosse, quoted by M. Gardner, Scientific American 228 (May 1973):105, and by 
R. A. Knoebel (to be published in the American Mathematical Monthly). 

***** 

GENERALIZED FERMAT AND MERSENNE NUMBERS 

STEVE LIGH and PAT JONES 
University of Southwestern Louisiana, Lafayette, LA 70504 

(Submitted November 1979) 

1. INTRODUCTION 

The numbers Fn = 1 + 22" and Mp = 2P - 1, where n is a nonnegative integer and 
p is a prime, are called Fermat and Mersenne numbers, respectively. Properties of 
these numbers have been studied for centuries and most of them are well known. At 
present, the number of known Fermat and Mersenne primes are five and twenty-seven, 
respectively. It is well known that if 2n - 1 = p, a prime, then n is a prime. It 
is quite easy to show that if 2n - 1 = pq9 p and q are primes, then either n is a 
prime or n = v2

9 where v is a prime. Thus 

2vl - 1 = pq = (2y - l)(2y(u"1) + ... + 2y + 1), 

where 2 u - l = p i s a Mersenne prime. This leads to the following definition. 
Let k and n be positive integers. The number L(k9 n) is defined as follows: 

L(k9 n) = 1 + 2n + (2n)2 + ... + (2n) 


