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The purpose of this note is to simplify and extend the results in [1]. Given
a positive integer n, let C.(n), C,(n) denote the number of representations of
as a sum of an even, odd number of consecutive positive integers.
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THEOREM 1: C,(n) is the number of odd divisors d of n such that
dd + 1)
2

C. (n) is the number of odd divisors d of # such that > n.

PROOF: 1f n is a sum of an odd number b of consecutive integers, then there
exists an integer a > 1 such that

b-1
n=Z(a+i)=b(a+b;1).

=0
Hence b is an odd divisor of »n with é-(—b;—l—)—f_ n, since
b +1 b-1_mn
7 fatTH =p
If b is an odd divisor of n such that —b(b—2+1—)- <n, let a = —Z—-b ; Then a > 1

and

b 1 b-1
n=>hba+ 5 =Z(a+i),
=0
so that n is the sum of an odd number of consecutive positive integers.
If n is a sum of an even number b of consecutive positive integers, then there
exists an integer a > 1 such that
. b-1

B .o _b
n-g:o(a+7,)——2—(2a+b—l).
Let d = 2a+ b -1, then d is odd, d divides #n, and -d(—dzj.—l)— > n, since
d+1=2a+b>b=2d—”.
If d is an odd divisor of »n such thatd-gle—)> n, let b =27dn-and a=gl-%—:—b—).

Then a > 1, b is even, and

b-1
n=%=€.(2a+b—l) =iz-:o(a+i),

so that n is a sum of an even number of consecutive positive integers. O
An immediate consequence of Theorem 1 is the following corollary.

COROLLARY 1: Letn =2m, r > 0, m odd. The number of representations of »n as a
sum of consecutive positive numbers is T(m) (the number of divisors of m). O

This result is also in [2], which of course gives the results in [1].

We also find a characterization of primes.
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COROLLARY 2: Let n be an odd positive integer. Then #n is composite if and only
if there is a pair of positive numbers u, v such that

(1) 8n =u? - v%; u-1v>6.

PROOF: 1f n is odd composite, then # is the sum of at least three consecutive
integers by Theorem 1. That is

n=a+ @+ 1)+ + (a+ k), k> 2.
Hence 2n = (kK + 1)(2a + k). Let v = 2a - 1 and u = 2k + 2a + 1. Then

k+1=%"Y and 20+ k=%FY

2 2
so that 81 = u? - 2 and u - v > 6. Note that u, v are odd. Conversely, given an
odd integer 7n satisfying (1), we find

8 = (u+v)Y(u - o).

If n is prime and u ~ v is even, then u - v = 8, 2n, or 4n., When u - v = 8, we
have 2u = n + 8 so that n = 2, while u -~ v = 2n implies that u = 2 + n, and hence
V=2-n<0.If u-v="4dn,thenu +v = 2 and u = v = 1, which says that n = 0.
Thus, if n is a prime, we must have u + v = 8 and u - v =7, which implies once
again that n = 2.

We conclude that » must be composite. It is also simple to solve the above
system for a and k. O

It is not easy to find C,(n) explicitly. For instance, let T,(n, Z) denote
the number of odd positive divisors of n which are < x. One finds
e, (n)
, d 1
AR ML) S ¥
d<x k <x/d
d odd k odd

where cd(n) is the Ramanujan function. This is not altogether satisfactory, but
it will yield an estimate. One direct but very elaborate way to find T,(n, X) ex-

plicitly is by counting lattice points as follows. Write n = 2a°pla1 . p;k as a
product of primes. An odd divisor d of n is of the form d = p2' ... pfk, where
0 < b; <a;. The inequality d < x means

b, log py + -+« + by log p; < log =x.
Let e;, ..., 2, be the standard basis of R*. Consider the parallel-piped P deter-
mined by aie;, ..., aie, and the hyperplane # with equation

x, log py + -+ + x, log p, = log x.

Then To(n, &) is the number of lattice points in the region "below" H which are
also contained in P. There are of course k? possible intersections of H with P to
consider, a formidable task! However, we have, perhaps a little surprisingly,

COROLLARY 3: Write mn = ka, where m is odd. Then .
1
C,n) %T(m); c,(n) < (k + E)T(m).

In particular, when » is odd, we have

cetry < X < o m.

PROOF: 1t is very easy to show that

-1 + /1 + 8n

(D < 3 ,



38 CONCERNING A PAPER BY L. G. WILSON [Feb.

and if d > 0, then
(2) ———Z———gn<=>dg

Thus C,(n) is at least the number of odd divisors d of »n that are < v#, so a for-
tiori we have

Co ()
1f d|m and d < Vm, then m/d|m and m|d

Tm if m is not a square
T, Ji) = {2
ESE%Ti—l‘if m is a square.

Hence Co,(n) > tT(m)/2. We have C,(n) = 1(n) - Co(n), and thus

(k + 1)t(m) - T(Zm) = (k +~;—)T(m).

Cy(n)

A

This completes the proof. O
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1. INTRODUCTION

Wilson [3] uses the expression (2.1) below, which approximates the Fibonacci
and Lucas sequences {F,} and {L,}, respectively, for r sufficiently large. The
object of this paper is to make known this and another expression (3.1) by apply-
ing techniques different from those used in [3]. In particular, we need

- 2 LT
(1.1) B, = 4 cos 57

Special attention is directed to the sequence (2.4).

2. A GENERATING EXPRESSION

Consider

(2.1) Fr (x, y) =7, = (g:__+_______ W)r—ly_llz’



