A TRINOMIAL DISCRIMINANT FORMULA

PHYLLIS LEFTON

Manhattanville College, Purchase, NY 10577

The expression $b^2 - 4ac$ is well known to algebra students as the discriminant of the quadratic $ax^2 + bx + c$, with $a \neq 0$. However, how many students are aware of the existence of discriminant formulas for higher-degree polynomials? The purpose of this paper is to develop such a formula for the trinomial

$$ax^n + bx^k + c, \tag{1}$$

with n > k > 0 and $a \neq 0$. The formula has appeared in the literature in various forms ([1, p. 130], [2], [3], [4], [5, p. 41], and [6]). It can be written as

$$\Delta_{n,k} = (-1)^{\frac{1}{2}n(n-1)} a^{n-k-1} c^{k-1} (n^N a^K c^{N-K} + (-1)^{N-1} (n-k)^{N-K} k^K b^N)^d, \qquad (2)$$

where d is the greatest common divisor of n and k and N and K are given by n = Nd and k = Kd. Notice that the case n = 2 and k = 1 gives the quadratic discriminant

$$\Delta_{2,1} = b^2 - 4ac.$$

In this paper we derive (2) by standard algebraic techniques that involve some elementary calculus and roots of unity. As a generalization of the quadratic case, the trinomial discriminant formula can provide an interesting enrichment topic for advanced-level algebra students.

To appreciate what is involved in deriving (2), consider the usual definition of the discriminant D_n of the general *n*th-degree polynomial

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n.$$
(3)

Van der Waerden [7, p. 101], for example, defines D_n as

$$D_n = \alpha_0^{2n-2} \prod_{i < j} (\alpha_i - \alpha_j)^2, \qquad (4)$$

where the α 's are the roots of f(x).

As examples, let us compute D_n for n = 2 and n = 3. In these cases, (3) is more commonly written as $f(x) = ax^2 + bx + c$ and $f(x) = ax^3 + bx^2 + cx + d$, respectively. Using (4) together with the well-known expressions that relate the coefficients of each polynomial to the elementary symmetric functions of their roots, we get

363

A TRINOMIAL DISCRIMINANT FORMULA

$$D_2 = b^2 - 4ac$$

and

$$D_3 = b^2 c^2 - 27a^2 d^2 - 4b^3 d - 4ac^3 + 18abcd.$$

We note that for $n \ge 3$, D_n becomes more difficult to compute directly from the roots of f(x).

There are other expressions for D_n that involve the derivative f' of (3). A straightforward manipulation of the product (4), for example, gives:

$$D_n = (-1)^{\frac{1}{2}n(n-1)} \alpha_0^{n-2} \prod_{i=1}^n f'(\alpha_i).$$
 (5)

Still another expression for D_n is the one we will use to derive (2), namely:

$$D_n = (-1)^{\frac{1}{2}n(n-1)} a_0^{n-1} n^n \prod_{j=1}^{n-1} f(\beta_j), \qquad (6)$$

where the β 's are the roots of f'(x). It is not hard to compute the discriminant of (1) from (6) because the derivative of a trinomial is a binomial whose roots are easy to find.

The expression (6) is obtained by considering the double product

$$(a_0 n)^n \prod_{i=1}^n \prod_{j=1}^{n-1} (\alpha_i - \beta_j),$$

where the α_i 's and the β_j 's are the roots of f(x) and f'(x), respectively. By rearranging this double product, as described in [7], it is easy to show that it is equal to each of the following single products, which are hence equal to each other:

$$\alpha_0 n^n \prod_{j=1}^{n-1} f(\beta_j) = \prod_{i=1}^n f'(\alpha_i).$$
(7)

A comparison of (7) with (5) then gives (6).

We now derive the discriminant formula. We first obtain the formula for $f(x) = ax^n - bx^k + c$ and then replace b by -b. Write

$$f(x) = ax^{n} - bx^{k} + c = c - (b - ax^{n-k})x^{k}$$
(8)

and

$$f'(x) = nax^{n-1} - kbx^{k-1} = x^{k-1}(nax^{n-k} - kb).$$

Clearly, the roots of the binomial f'(x) are (k - 1) zeros and the solutions of $x^{n-k} = kb/na$. Therefore, by (8),

$$\prod_{j=1}^{n-1} f(\beta_j) = c^{k-1} \prod_{\zeta} \left(c - \left(b - \alpha(\zeta\beta)^{n-k} \right) \left(\zeta\beta \right)^k \right),$$

364

[Nov.

where ζ runs through all of the (n - k)th roots of unity and $\beta^{n-k} = kb/na$. For further information about roots of unity, see [7, Sec. 36]. Simplifying, we have

$$\prod_{j=1}^{n-1} f(\beta_j) = c^{k-1} \prod_{\zeta} \left(c - \left(\frac{n-k}{n} \right) b \beta^k \zeta^k \right).$$

Now, as ζ runs through the (n - k)th roots of unity, ζ^k runs d times through the (N - K)th roots of unity. Therefore, after further simplification with roots of unity, we get

$$\prod_{j=1}^{n-1} f(\beta_j) = c^{k-1} \left(c^{N-K} - (n-k)^{N-K} k^K n^{-N} a^{-K} b^N \right)^d.$$

Here we are using the fact that, if ω is a primitive *m*th root of unity, then

$$u^m - v^m = \prod_{i=0}^{m-1} (u - v\omega^i).$$

Using (6) and substituting -b for b, we obtain the desired formula given in (2).

ACKNOWLEDGMENT

Thanks is given to Professor P. X. Gallagher for his help and to Professor K. S. Williams for referring the author to the articles by Masser, Heading, and Goodstein.

REFERENCES

- 1. E. Artin. Theory of Algebraic Numbers. Göttingen, 1959.
- R. L. Goodstein. "The Discriminant of a Certain Polynomial." Math. Gaz. 53 (1969):60-61.
- 3. J. Heading. "The Discriminant of an Equation of *n*th Degree." *Math. Gaz.* 51 (1967):324-326.
- 4. D. W. Masser. "The Discriminants of Special Equations." *Math. Gaz.* 50 (1966):158-160.
- 5. P. Samuel. Algebraic Theory of Numbers. Paris: Hermann, 1970.
- 6. R. Swan. "Factorization of Polynomials Over Finite Fields." Pacific J. Math. 12 (1962):1099-1106.
- 7. B. L. van der Waerden. Algebra. Vol. I. New York: Ungar, 1970.
