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1. INTRODUCTION 

As usuals let a(ft) denote the sum of all the divisors of n [with o~(l) 

= 1] and let oo(ft) denote the number of different prime factors of ft [with 

OJ(1) := 0]. The set of prime numbers will be denoted by 0*. The set of 

hyperperfect numbers (HPfs) is the set M i= \J Mn$ where 
n = 1 

Mn := {m e n\m = 1 + n[o(m) - m - 1]}. (1) 

We also define the sets 

kMn := {m E Mn\u(m) = k}, fe, n £ N , (2) 

and kM := |J ̂ Mn; clearly, we have Afn = |J ̂ Mn. We will also use the re-

lated set M* := Q ^*s where 
n = l 

M* : = {^ E N\m = 1 + n[a(m) - m]}, (3) 

and the sets 

kM% := {m E M^|co(m) = fc}, fc E N U {0}s n G N , (4) 

and kM* := Q k^5 so that also Af* = Q fc^S-
n = 1 /c = 0 

It is not difficult to verify that 1Mn = 05 Vft E Ns and that 

/ 0M* = {!}, Vft E N and 

< ({(ft + l ) a
s a E N } S if ft + 1 E ^ (5) 

I 1 n I ^ 
V v 0, if ft + 1 g <̂ . 

Afx is the set of perfect numbers [for which o{m) - 2m]* The ft-hyperper-

feet numbers Mn, introduced by Minoli and Bear [1], are a meaningful gen-

eralization of the even perfect numbers because of the following rule, 
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^ULE 0 (from [2]): I f p G ^ , a G N , and if q := p a + 1 - p + l E ^ , then 

There are 71 hyperperfect numbers below 107 (see [2], [3], [4], [5]). 

Only one of them belongs to 3M5 all others are in 2M, In [6] and [7] the 

present author has constructively computed several elements of J4 and two 

of hM. 

In Section 2 of this paper, we shall give rules by which one may find 

(with enough computer time) an element of /7 NAf and of „ NM from an 
(k + 2) n (k + 1) n 

element of kM* {k > 0), and an element of kM* from an element of (fe_2)M* 

(k ^ 2). Because of (5), this suggests the possibility to construct HP?s 

with k different prime factors for any positive integer k ^ 2. By actually 

applying the rules, we have found many elements of M> seven elements of 

hM5 and one element of 5M.2 

In Section 33 necessary and sufficient conditions are given for numbers 

of the form paq$ a G N, to be hyperperfect. For example3 for ,a ̂  3S these 

conditions imply that there are no other HPfs of the form paq than those 

characterized by Rule 0. The results of this section enable us to compute 

very cheaply all HPfs of the form paq below a given bound. Unfortunatelys 

we have not been able to extend these results to more complicated HPf s 

like those of the form paqB
5 a > 2 and 3 > 2S or paqBry with a > 1, (3 > 1 

and y > 1, etc. (However, these numbers are extremely scarce compared to 

HPfs of the form paq, and no HPfs of the form paq® and paq®ry with a > 2 

and 3 ^ 2 have been found to date.) 

Because of the importance of the set M* for the construction of hyper-

perfect numbers, we given in Section 4 the results of an exhaustive search 

for all m E M* with m < 108 and 0)(m) > 2. It turned out that elements of 

5M* are very rare compared with 2M*, in analogy with the sets 3M and ^M* 

This search also gave all elements < 108 of M, at very low cost, because 

of the similarity of the equations defining M* and M. See note 1 below. 

The paper concludes with a few remarks5 in Section 5, on a possible 

generalization of hyperfeet numbers to so-called hypercycless special cases 

of which are the ordinary perfect numbers and the amicable number pairs. 

Lists of these numbers may be obtained from the author on request. 
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Remark: After completing this paper, the author computed, with the rules 

given in Section 2, 860 HP?s below the bound 10 . See note 1 above. 

2. RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS 

We have found the following rules [we write "a for o(a)] i 

RULE 1 : Let k E N, n E N3 a E kM*, and p := rid + 1 - n; if p E ^ then 

RULE 2: Let fc E N U {0}, n E N, a E feAf*, and p := na + 4, q := na + 5, 

where A B = l - n + ria + n2~d 2; if p G ^ and q E ̂ 5 then ap^ E (k + 2)Mn* 

RULE 3: Let fe E N U {0}, n E N, a E ^M*? and p := M + i} (7 := na + 5, 

where .45 = 1 + rid + n2"a 2; if p E ^ and g E ^ 5 then apg E (^ + o/^-

The proofs of these rules don!t require much more than the application 

of the definitions, and are therefore left to the reader. In fact, the 

proof of Rule 2 was already given in [7], although the rule itself was 

formulated there less explicitly. 

Rule 1 can be applied for k ^ 1, but not for k = 0, since 0Af* = {1} 

and a - 1 gives p = 1 { ^. For k = n = 1, Rule 1 reads: 

If p := 2a + 1 - 1 G 0>, then 2ap E 2M,, 

which is EuclidTs rule for finding even perfect numbers. For /c = 1, Rule 

1 is equivalent to Rule 0, given in Section 1. 

Rules 2 and 3 can both be applied for k > 0. For instance, for k = 0, 

Rule 2 reads: 

Let n EN he given; ifp := n + A E 0* and q : = n + 5 E gP, 

where ^5 = 1 + n2, then pg E 2Mn. 

For n = 1, 2, and 6, this yields the hyperperfect numbers 2x3, 3 x 7 , and 

7x43, respectively. Rule 3 reads, for k - 0: 

Let n E N be given; ifp : = n + A E ̂  and q : = n + 5 E «^, 

where 45 = 1 + n + n2, then p^ E 2M*°  

For n = 4 and n = 10, we find that 7x 11 E 2M* and 13x 47 E 2M*0, respec-

tively. 
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Rule 3 shows a rather curious "side-effect" for k > 1: if both the 

numbers p and q in this rule are prime, then not only apq E (k 2)M*', but 

also the number b := pq is an element of 2^na' Indeed, we have 

pq - 1 = n2 "a 2 + na(A + B) + AB - 1 
a(i) - fc p + q + 1 2na + ,4 + £ + 1 

n2~a2 + na(A + B) + na + n2~a2 — _ .. 
2na + i4 + 5 + 1 

For example, we know that 7 x 11 E 2M*. From Rule 3 with k = 2, n = 4, and 

a = 7x11, we find that 7x 11 x 547 x 1291 E 4A/*; the side-effect is that 

547x1291 E 2 < x 8 x l 2 ) = 2 M * 8 V 

In [6] we gave the following additional rule. 

RULE 4: Let i E N and p i= 6t - 1, q := 12* + 1; if p E ̂  and q E ̂ , then 

For example, t = 1 and t = 3 give 5213 E 2M3 and 17237 E 2M1:L, respec-

tively. In Section 3 we will prove that with Rules 1, 2, and 4 it is pos-

sible to find all HP's of the form paq, a E N, below a given bound. We 

leave it to interested readers to discover why there is no rule (at least 

for k > 1), analogous to Rule 1, for finding an element of (k+1)M^ from an 

element of kM^. 

From Rules 1-3, it follows that elements of kMn for some given kEN 

may be found from (k.±)M* (with Rule 1) and from (k_2)Af* (with Rule 2) pro-

vided that sufficiently many elements of (^-D^Z r e s P s (k-DMn a r e avail-

able; these can be found with Rule 3 and the "starting" sets QM* and ^ 

given in (5). We have carried out this "program" for the constructive 

computation of HPfs with three, four, and five different prime factors. 

(i) Construction of elements of 3Mn. With Rule 1, we found 34 HPfs 

of the form pqr, from numbers pq E 2^n: 

the smallest is 61 x 229 x 684433 G 3Af48; 

the largest one is 9739 x 13541383 x 1283583456107389 E 3M97 3 2* 

The elements of 2M* were "generated" with Rule 3 from QM* = {1}. Using 

Rule 2 we found, from prime powers pa E 1M*t, 67 HPf s of the form pqrt 
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five of the smallest are given in [6], 

the largest is 8929 x 79727051 x 577854714897923 E 3M 8 9 2 8; 

48 HPfs of the form p2qr9 

the smallest five are given in [6], 

the largest is 74592414994003583 x 34444004601637408163219 E 3M7h5Q; 
9 of the form p3qr, 

the smallest is given in [6], 

the largest is 8113432596915921 x 89927962885420066391 E 3MQ1Q; 
4 of the form phqr9 

the smallest is 7^30893 x 36857 E 3M6, 

the largest is 223^553821371657 x 130059326113901 E 3M2ZZ; 
and, furthermore, 

761340243 x 2136143 E 3M6, 

137815787979 x 11621986347871 E 3Af12, 

and 

198322687706723 x 11640844402910006759 E 3A/18. 

(ii) Construction of elements of HMn. In order to construct elements 

of hMn with Rule 1, sufficiently many elements of 3Af* had to be available. 

This was realized with Rule 3, starting with elements p a E 1^(P + i)5 p E ̂ . 

The following four HPfs with four different prime factors were found: 

3049 x 9297649 x 69203101249 x 5981547458963067824996953 E ^M30485 

4201 x 17692621 x 7061044981 x 2204786370880711054109401 E ^ 2 0 0 , 

18125991031 x 579616291 x 20591020685907725650381 E ^ 1 8 0 , 

18131108889497 x 33425259193 x 39781151786825440683346549261 E hM1QQ. 
By means of Rules 2 and 3S the following three additional elements of hMn 

were found: 

1327 x 6793 x 10020547039 x 17769709449589 E ^M111Q (is in [6]), 

1873 x 24517 x 79947392729 x 80855915754575789 E ^M17l¥0 (is in [7]), 

5791 x 10357 x 222816095543 x 482764219012881017 E hM371l+. 

(iii) Construction of an element of 5Mn. We have also constructively 

computed one element of 5Mn with Rule 1. The elements of 4M* needed for 

this purpose were computed from M* by twice applying Rule 3 (first yield-

ing elements of 2M^, then elements of hM*n) . The HP found is the largest 
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one we know of (apart from the ordinary perfect numbers). It is the 87-

digit number: 

209549717187078140588332885132193432897405407437906414 

236764925538317339020708786590793 

= 4783 x 83563 x 1808560287211 x 297705496733220305347 

x 973762019320700650093520128480575320050761301 G5^521f. 

3- CHARACTERIZATION OF ALL HP'S OF THE FORM paq 

The hyperperfect numbers of the form paq are characterized by the fol-

lowing theorem. 

Theorem: Let m := paq (a E N, p G 0>9 q E0>) be a hyperperfect number, then 
(i) a = 1 => (In E N with m E 2Mn such that p = n + A, q = n + B, with 

,45 = 1 + n2); 

(ii) a = 2 => (3t E N with m E 2̂ (I+t_ 1} and p = 6t - .1 and ^ = 12t + 1) 

V (/?? E 2%-i) with q = p3 - p + 1 ) ; 
(iii) a > 2 =•> (tfz G 2^(P-I)

 w i t h 4 = Pa+± " P + X ) 8 

Proof: (i) This case follows immediately from Rule 2 (with k = 0). 
(ii) If p2^ is hyperperfect, then the number (p2q - 1)/((p + 1)(p + g)) 

must be a positive integer. Consider the function 

To characterize all pairs x, y for which f(xs y) E N, we can safely take 
x > 2 and y > 2B Let ̂  > 2 be fixed., then we have for all y > 29 

2 2 i 
j?/ \ s y S i J_ 

J(^5 #' ̂  (# + 1) (X + y) x + 1 = * " x + 1" 

Hence5 the largest integral value which could possibly be assumed by f is 
x - 1, and one easily checks that this value is actually assumed for y = 
x3 - x + 1. So we have found 

f(x9 x3 - x + I) = x - ls x EN, x > 2. (6) 

One also easily checks that / is monotonically increasing in y (x fixed), 

so that 

2 < y < x3 - x + 1. (7) 
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Now, in order to have / E N, it is necessary that x + 1 divides x2y - 1, 

or, equivalently, that x + 1 divides y - 1, since 

xZy - l 
—^- = y(x - 1) +iL^—f 

Therefore, we have z/ = k(x + 1) + 1, with k E N and 1 < & < # ( # - 1) by 

(7). Substitution of this into f yields 

_£• t v I\.*XJ "T" «A/ " " J - ., »A^ "~" i/L/ ~~' Av -j / 7 \ 

/ u : ' ^ = (fe + i)(x + ij ^ x ~ L ~ (fe + i ) ( # + i ) = : * " x " ^ ' ^ 

It follows that x + 1 must divide #2 - # - k9 or, equivalently, that x + 1 
must divide k - 2. Hence, fc = j(x + 1) + 2, with j E N U{0} and 0 < j < 
a? - 2. Substitution of this into g yields 

g(x9 j(x + 1) + 2) - X ' 2 " J' 
j (a: + 1) + 3 ' 

This function is decreasing in j, and for j = 0, 1, ..., x - 2 it assumes 

thB V a l u e S : gtx, 2) = (x - 2)/3, 

#0r, ;r + 3) = ~-^- < 1, 

^ (.x, acr (x - 1) ) = 0. 

It follows that there is precisely one more possibility [in addition to 

(6)] for / to be a positive integer, viz., when j - 0, k = 2, y = 2x + 3, 

and & (mod 3) = 2. So we have found 

f(3t - 1, 6£ + 1) = 2t - 1, £ EN. (8) 

The statement in the Theorem now easily follows from (6) and (8). 

(iii) As in the proof of (ii), we now have to find out for which values 

of x, y E N, x > 2, and y > 2, the function /Or, z/) E N, where 

f(x9 y) := X^ " 1 , a> 2. 
(xa-l + ... + 1 ) ^ + 2/) 

For fixed a; ^ 2, we have 
# a 1 

/Or , z/) < = x - 1 + tf^1 + • • • + ! x a _ 1 + . . . + 1 
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As in the proof of (ii) we find that f(xs y) = x - 1 for y = ̂ a+1 - x + 1 
and that 2 < y < xa + 1 - x + 1. Furthermore, x*'1 + ••• + 1 must divide 

xay - 1, so that y = kix*'1 4- . .. + 1) + 1, with 1 < k < x(x - 1). Sub-

stitution of this into f yields a certain function gs in the same way as 

in the proof of (ii), but in this case g can only assume integral values 
for k - x(x - 1), This implies the statement in the Theorem., case (iii) . 

Q.E.D. 

It is easy to see that the characterizations given in this Theorem are 

equivalent to Rule 2 (k = 0) when a = 1, to Rule 4 or Rule 1 (k = 1) when 
a = 2 s and to Rule 1 (k = 1) when a > 2. 

This Theorem enables us to find very cheaply all HPfs of the form paqs 

a E N 5 below a given bound. For example, to find all HP?s in Mn of the 

form pq below 108, we only have to check whether 

p : = n + A E 0> and q : = n + B E 0> 

for all possible factorizations of AB = 1 + n2
 s for 1 < n < 4999 * This 

range of n follows from the fact that if pq E Mn then pq > 4n2s The fol-

lowing additional restrictions can be imposed on n: 
(i) n should be 1 or even since, if n is odd and n ^ 3S then n2 + 1 E 2 

(mod 4)5 so that one of A or B is odd and one of p or q is even and 

> 4. 
(ii) If n > 3S then n E 0 (mod 3) , since If n E 1 or 2 (mod 3), then 

n2 + 1 E 2 (mod 3), so that one of A or 5 is E 1 (mod 3) and the 
other Is E 2 (mod 3); consequently, one of p or q is E 0 (mod 3) and 

> 3. 

Hence, the only values of n to be checked are n = 1, n = 2, and n = 6£, 
1 < t < 833. It took about 6 seconds CPU-time on a CDC CYBER 175 computer 
to check these values of n, and to generate in this way all HPfs of the 

form pq below 1Q8* 

k« EXHAUSTIVE COMPUTER SEARCHES 

From the rules given in Section 23 it follows that it is of importance 

to know elements of M* when one wants to find elements of M. Therefore, 
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we have carried out an exhaustive computer search for all elements of M* 

below the bound 108. Because of (5) the search was restricted to elements 

with at least two different prime factors. A check was done to determine 

whether (m - l)/(o(m) - m) G N , for all 7?? < 108 with a)(m) > 2. Since the 

most time-consuming part is the computation of o(m), a second check was 

done to determine whether (m - l)/(o(m) - m - 1) G N [in the case where 

(m - l)/(o(m) - m) (£. N] . If so, m was an HP; thus, our program also pro-

duced, almost for free, all HPTs below 108. (The search took about 100 

hours of "idle" computer time on a CDC CYBER 175.) The results are as 

follows. 

Apart from the ordinary perfect numbers, there are 146 HP!s below 10 . 

Only two of them have the form paqr: 

13 x 269 x 449 £ 3M12 and 72383 x 3203 E 3MS; 

these were also found in the searches described in Section 2. All others 

have the form characterized in Section 3, and could have been found with 

a search based on that characterization (using the fact that if paq E 2Mn, 

then p > n and q > n). A question that naturally arises is the following: 

Are there any HPT s that cannot be constructed with one of Rules 1, 2, or 

4?2 

There are 312 numbers m < 108 which belong to M* and which have ud(m) 

> 2. Of these, 306 have the form pq and could have been (and, as a check, 

actually were) found very cheaply with Rule 3 of Section 2. The others 

are: 

7 x 61 x 229 E 3i^, 113 x 127 x 2269 E 3Af*8, 

149 x 463 x 659 E 3i^ 6, 19 x 373 x 10357 E SM*1Q, 

151 x 373 x 1487 E 3M?0 0 , 7 x 11 x 547 x 1291 E Jti*i 

the second, third, and fifth numbers could not have been found using Rule 

3. 

2The referee has answered this question in the affirmative by giving 
the example 12161963773 = 191 x 373 x 170711 EM1 2 6. 
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5- HYPERCYCLES 

A possible generalization of hyperperfect numbers can be obtained as 

follows. Let n E N be given, and define the function fn :N\{1} =» N as 

fn(m) := 1 + n[o(m) - m - 1], me N\{1}. (9) 

S t a r t i n g w i t h some / 7 7 0 E N \ { 1 } , one might i n v e s t i g a t e t h e sequence 

" V / n K > > fn(fn(m0))9 . . . . ( 1 0 ) 

For n = 1, this is the well-known aliquot sequence of mQ9 which can have 

cycles of length 1 (perfect numbers) , length 2 (amicable pairs) , and others. 

In order to get some impression of the cyclic behavior for n > 1, we have 
computed, for 2 < n < 20, five terms of all sequences (10) with starting 

term mQ < 106, and we have registered the cycles with length > 2 and < 5 

in the following table. 

TABLE 1 

HYPERCYCLES" 

5 2 19461 = 3x13x499, 42691 = 11x3881 
7 3 925 = 52375 1765 = 5x 353, 2507 = 23 x 109 
8 2 28145 = 5x 13x 433s 66481 = 19 x 3499 

3 238705 = 5x477415 381969 = 337x 43x47, 2350961 = 79x29759 
4 94225 == 523769, 181153 = 723697, 237057 = 3x31x2549, 

714737 = 61x 11717 
2 3452337 = 327x 54799, 17974897 = 53x 229x 1481 

9 2 469 = 7x 67, 667 = 23 x 29 
2 1315 = 5x 263, 2413 = 19 x 127 
2 1477 = 7x 211, 1963 = 13 x 151 
2 2737 = 7x 17 x 23, 6463 = 23 x 281 

10 3 1981 = 7x 283, 2901 = 3x 967, 9701 = 89 x 109 
12 2 697 = 17x 41, 2041 = 13x 157 

2 3913 = 7x 13 x 43, 12169 = 43 x 283 
2 54265 = 5x 10853, 130297 = 29x 4493 

14 2 1261 = 13x97, 1541 = 23x67 
3 508453 = 11x17x2719, 1106925 = 3 x 5214759, 

10126397 = 281x 36037 
'Different numbers mQS m19 .-., ̂ _ x such that m^ 
mi + i := fn(mi)> fn defined in (9). 
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TABLE 1 (continued) 

n k mQ9 m19 ..., mk^1 

19 2 9197 = 17x541, 10603 = 23x461 
4 184491 = 336833, 1688493 = 3x562831, 10693847 = 709x15083, 

300049 = 31x 9679 
2 5151775= 52251 x 821, 24124073 = 89x271057 
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