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It is clear that for any given positive integer N there are infinitely many
square numbers which can be represented as the difference of square numbers in
at least N different ways.

For instance, if n = 4p.p,...p,, where p,, p,, ..., p, are the smallest r
odd primes such that r > log,lV, then for each subset S of {1, 2, 3,..., »r}, n?
has the expression

n2 = (h2 + k2)2 _ (hZ _ k2)2’
where
n=20p, k=T1p,
iES i€ES
with the convention that an empty product means 1 and the notation S for the
complement of S, giving 2¥ > N distinct expressions.
Thus, we can choose n in such a way that

n = 0(eclogNloglogN) (].)

for large values of N, where ¢ is a constant.

In this paper we prove a similar theorem concerning the sequence of numbers
An, = an? + bn for any integers a and b with a > 0, which includes the earlier
result [1] as the special case of N = 2.

Theorem

For any given positive integer N, there exist an infinite number of 4,'s
which can be expressed as the difference of two numbers of the same type in at
least N different ways. We can choose an n for each N in such a way that it
satisfies (1) as N tends to infinity.

Proof: It is enough to prove that for any sufficiently large N, there is
an 4, which has at least NV such expressions. Since
Ap = Ay - Ay (2)
is equivalent to
n(an + b) = (h - k)(ah + ak + b),
in order to get the expression (2) for given #n, it is sufficient to find a de-
composition of 7 into two factors s and t; n = st, for which

h-k=s, alh+ k) +b=t(an + b) (3)

has positive integral solutions % and k.

Let Pys Pys +ves Dy be the smallest » distinct prime numbers in the arith-
metic progression consisting of positive integers congruent to 1 modulo 2a, and
let

n= 20D, s Ppe

For each proper subset $ of {1, 2, ..., r}, there corresponds a distinct

decomposition of »n into two factors
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s=21[1p, and ¢t =J1p.,
i€8 ies *©
where ¢ can be expressed as ¢ = 1 + 2qu for a positive integer u, and we have
h+k =st + 2u(an + b)

from the second equation of (3).

If n is sufficiently large so that it will satisfy an + b > 0, then Eq. (3)
gives distinct pairs %, k for different decompositions n = st of #.

In this case, however, two different %'s may give the same 4; if b/a is a
negative integer. Since at most four pairs of %, k give the same expression,
we have at least N distinct expressions (2) of 4, if » satisfies

2" -1 > 4n,

and N is sufficiently large so that corresponding n will satisfy an + b > O.
If we take r that satisfies

log, (4l + 1) < r < log, (4N + 1) + 1,
then for large values of N we have
log n = log 2 + log p, * e F log p, = 0(p,) = O(r log r),

from which we obtain
n = O(ec logh loglogIV)

for a constant ¢, completing the proof.
If we do not care about the size of n, we can take simpler forms for s and
t in (3); if b/a is not a negative integer,
s=2(1+20)%, t =1 +20)" % (i=1,2, ..., N = 1)

give N distinct expressions of the form (2) for % and k determined by (3), and
if b/a is a negative integer, N will be substituted by 4.
These results apparently cover the case of polygonal numbers of any order.

Examples

For tiagonal numbers t, = 5(n% + n), we have t, = t; - ty, where
no=2x3, n=3% 43T uton, ko= 3% 4 32 4 53T -

fort =1, 2, ..., N - 1.
For hexagonal numbers %, = 2n®> - n, we have h, = h, - h;, where

2 x 57, o= 5% 4 520-7 _p(5F-% 1y, k = -5% 4 520-% _ y(5¥-7 )
for 2 =1, 2, ..., N - 1.

n
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