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It has been proved [7, Lemma 3] that an integer has the property that
(x, m) = 1 implies z® = 1 (mod m) iff m|24.

To generalize this result, we make the following definition.
Definition 1

Let n be a positive integer. The integer m has property P(n) if and only
if (x, m) = 1 implies 2” = 1 (mod m).

In §1 we shall determine, for »n > 1, all integers which have property P(n);
in §2 we shall prove some consequences of an integer having property P(n) or a
similar property.

1. INTEGERS HAVING PROPERTY P(n)

In Theorem 2, we shall show that the only integers having property P(n),
where n is an odd positive integer, are -2, -1, 1, and 2. 1In Theorem 3, we
shall determine the integers which have property P(n), where n is an even posi-
tive integer. In particular, we shall show that:

m has property P(4) iff m divides 240 = 23+ 5

m has property P(6) iff m divides 504 = 2332 .7

m has property P(8) iff m divides 480 = 2°+3+5

m has property P(10) iff m divides 264 = 233 .11

m has property P(12) iff m divides 65,520 = 2%3%25.7 .13

Theorem 2
Let n be an odd positive integer. The integer m has property P(n) iff m]Z.

Proof: Assume that m has property P(n), where n is an odd positive inte-
ger. Thus, since (-1, m) =1,

1 = (-1)" = -1 (mod m).
Therefore, m|2. Clearly, m|2 implies that m has property P(n).

Theorem 3

Let n be an even positive integer and let the distinct odd primes p which
are such that ¢(p)|n be denoted by DPy» Pps +++» P+ Choose e such that 2°%|n,
and for 7 =1, 2, ..., t, choose e; such that ¢(p%) |rz and ¢(pei+1)1 n. The
integer m has property P(n) iff m|2°*?pfip2: ... p°.
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On page 47 of [2], it is stated that the integer
e+2 e e e
2 P,'P, .. P°*
defined in Theorem 3 is the largest integer to have property P(n). Given a
positive integer 7, Theorems 2 and 3 enable us to find all integers m that have
property P(n). Given an integer m, Theorem 2 of [1] and its proof enable us to
find all positive integers » such that m has property P(n). An earlier refer-
ence is Theorem 4-9 of [4].
We shall need the following two lemmas to prove Theorem 3.

Lemma 4

Let d, m, n be integers with n positive. If m has property P(n) and d|m,
then d has property P(n).

Proof: Without loss of generality, assume d > 1 and m > 1. Let
m = qlelqu v ‘7?’
where ¢q,, g, ..., q, are distinct primes and e;, e,, ..., e, are positive in-
tegers. Also let g5 Gys5 ---> q;» where 1 <4< t, be the distinct primes that
divide 4. We shall now prove that J has property P(n). Thus, let (a, d) = 1.
Choose b such that
_ . = et e
b = a (mod qflqu ce q;J) and b = 1 (mod qjif ces Q7).

Since (b, m) = 1 and m has property P(n), b" = 1 (mod m). Therefore, since
a = b (mod d) and d|m, a™ = b™" = 1 (mod d).

A proof of the next lemma can be found, for example, in [6, pp. 104-105].
Lemma 5
Let ¢ be a positive integer. We have that:

(1) a?° = 1 (mod 2°%2) for all odd integers a.
(ii) 5 belongs to the exponent 2° modulo 2e+%2,

Proof of Theorem 3: First assume that the integer m has property P(n). We
shall show that

m|28*2pSipZz... pf
by showing that:
(i) 2¢*3 does not divide m,

e;+1

(ii) for 2z =1, 2, ..., t, p; does not divide m, and

(iii) the only odd primes that may possibly divide m are Dys DysevsPye

If 2°*3|m, then by Lemma 4, 5" = 1 (mod 2°*%). But since 5 belongs to the
exponent 2¢*! modulo 2°*?, we have the contradiction 2°*!|n.
Now suppose p® *1|m and let x be a primitive root modulo pfi+1. By Lemma 4,
A

x” = 1 (mod pf**'). But this is impossible since ¢(pfi+1) does not divide n.
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Similarly, suppose there is an odd prime p such that p|m and p # p; for
2=1, 2, ..., t, and let & be a primitive root modulo p. By Lemma 4, x" = 1
(mod p). But this is impossible since ¢(p) does not divide n.

Conversely, assume

m|22+2pi1p;2... per.
Thus, by Lemma 4, it is sufficient to prove that 2€+2pi1p:2... pf’ has property
P(n). So assume
e+2, e e e =
(a, 2 2N SCEEE p;) = 1.
Thus (a, 2) = 1, so by Lemma 5, a2 = 1 (mod 2°*2). Also, for ¢ =1, 2, ..., £,
(as pfO = 1, so by the Euler-Fermat theorem,
‘D(p:i) = e
a = 1 (mod 2 ).

Since Zeln and ¢(pfi)|n for 2 =1, 2, ..., t, a® = 1 (mod 2°*2) and g"
p:f) for 2 =1, 2, ..., t. Therefore,

1 (mod

a® =1 (mod 2°"%pSip%e... pe).

2. SOME CONSEQUENCES OF P(n)

We shall now consider some consequences of an integer m having property
P(n) or a similar property. Our first result shows that an integer m having
property P(n) puts a restriction not just on the n'h powers of the integers
relatively prime to m but on the n'™™ powers of all integers.

Theorem 6
Let m and n be integers with n > 2. The following four conditions are
equivalent:
I. m has property P(n).
II. For all integers a, b, k, where k is positive,
akn + pkn = gknpkn 4+ (a, D) (mod m).
III. For all integers a,
a™ = (a, m)" (mod m).

IV. For all integers g and b, if (ab, m) = (b, m), then, for all positive
integers Kk,

aknp

b (mod m).

Theorem 6 is not true for n = 23 for n = 2, m = 24, K =1, a = 10, and b =
14. I is true but II is false.

For Theorem 6, we clearly have that III implies I. Also, by letting b =m
and kK = 1 in II, we see that II implies III and, by letting » = 1 and Xk = 1 in
IV, we see that IV implies I. We shall complete the proof of Theorem 6 by
showing that I implies II and that I implies IV. To show that I implies II, we
shall need the following lemma, which, for the case ab = 0 (mod m) and k = 1,
was proved in Theorem 13 of [1].
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Lemma
Let n be a positive integer. If m has property P(n) and (a, b) = 1, then,
for all positive integers k,

akn + pkn = gknpkn 41 (mod m).

Proof: Choose d and e such that
de =m, (d, e) =1, (a, d) =1, and (b, e) = 1.

We can do this as follows: If (b, m) =1, let d =1 and e = m. Otherwise, let
Pis Pys «++» P, be the distinct primes that divide both b and m and, for 7 = 1,
2, ..., t, choose e,, e,, ..., e, such that p:i"m. Just let

d = p;lpEZ... p;* and e = I

Since dlm, d has property P(n). Thus, a*” = 1 (mod d). Similarly b*" =1
(mod e¢). Therefore,
0 = (ak - 1)(b*"* - 1) = agknpkn - gkn = pX" + 1 (mod m).
That is,
akn + pkr = gknpkn 4 1 (mod m).

Proof that | Implies II

Assume that m has property P(n) and let a, b, kK be integers with k posi-
tive. Let p,, p,s ...» p, be the distinct primes that divide all three of a,
b, m and, for ¢ =1, 2, ..., t, choose e; such that p:i|m. Thus, there is an
integer ¢ such that

m=piipst... plte, (a, b, ¢) =1, and (a, %) =1.

In addition, since m has property P(n) and n > 2, e; < n for ¢ =1, 2, ..., t.
We shall prove that I implies II by showing that
ak” + p*¥*  and  a*b*" + (a, B)**
are congruent modulo ¢ and modulo m/c.
Since ¢ has property P(n), the preceding lemma implies that

kn kn kng kn
+ b =_a’b + 1 (mod ¢)

(a, b)kn (a, b)kn (a, b)zkn
and ((a, b), ¢) =1 implies that
(a, B*" =1 (mod ¢).
These two congruences imply that
ak" + bkt = a** bk + (a, B)** (mod c).

Since, for ¢ =1, 2, ..., t, p;|(a, b) and e; < n < kn, (a, ¥ = 0 (mod
m/e). Hence, ak*®, b¥*, and a*"b*" are also congruent to 0 modulo m/c. Thus,

a

ak™ + bk = 0 = a*"p* + (a, ) (mod m/c).

Proof that | Implies IV

Assume that m has property P(n) and that (ab, m) = (b, m). Since
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(b, m)

(ab, m) = (ab, m(a, 1)) = (ab, am, m)

m
(abs m, m) = B, m(a> ey ),

]

= __m __
we have that 1 = (a, @, m))' Thus,
kn — m
a 1 (mod ?z:—zaj,

mb
b QmOd'fET7EY)'

1

so
ak"b
Therefore, a*™b = b (mod m).

11

The equivalence, for kK = 1, of I and IIT in Proposition 7, below, implies
Corollary 3.1 of [5].

Proposition 7
Let m, n, r be integers where n and r are positive and m has property P(n).
The following three conditions are equivalent:
I. mis (r + 1) power-free.

r+1l

II. For all integers a, (a®, m) = (a , M.

III. For all integers g and all positive integers k, a*"*? = g7 (mod m).
Proof: It is easy to show that I and II are equivalent. Now, II implying

III follows from the equivalence of Theorem 6(I) and Theorem 6(IV) with » = a¥.
To prove that III implies II, assume that g™*? = g* (mod m). Therefore,

(a®, m) = (a"**, m) > (a"**, m) > (a¥, m).
Proposition 8
Let k,m, n be integers such that k and n are positive,m has property P(n),
and m is (k, n) + 1 power-free. For every integer a, if the congruence
x®™ = g (mod m)

has a solution, then congruence x* = g (mod m) has a solution.

Proof: Let g be an integer and assume that the congruence
x*k:m) = g (mod m)
has a solution, say x = b. There are positive integers u and w such that

ku = nw + (k, n).
Thus, by Proposition 7,

bku - bnw-f-(k,?l) - b(k,n) = g (mod m)
Therefore, the congruence x* = @ (mod m) has a solution, for example, x = b¥.

The restriction '"m is (k, n) + 1 power-free" is needed in Proposition 8.
In general, for a prime p, if p(h’”+l divides m and k > (k, n), then the con-
gruence

z®m = pkm) (mod m)

will have a solution, but the congruence
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xk = p®™ (mod m)
will not have a solution. This is so because, for p a prime,
p*m*Lim gk = p®™ (mod m), and k > (k, n)
imply the contradiction

p(k,n)+l < (xk, m) = (p(k,n), m) = p(k,n)_
Our next result is a generalization of Theorem 1 of [3].

Theorem 9
Let ¢, d, m, n be integers with n positive and (ed, m) = 1. The following
two conditions are equivalent.
I. For all integers t, if (¢, m) = 1, then
(t" =™ (@E" - d" = 0 (mod m).
II. For all integers g and b, if ab = ed (mod m), then
a™ + b" = "+ d" (mod m).
Proof: First assume I and assume gb = ed (mod m). Thus,
(a, m) < (ab, m) = (ed, m) = 1.

Hence, by I,
0

1t

(an - cn)(an - dﬂ) = aZn - andﬂ - ancn + cndn

z a?" - g"d" - ate™ + a"b" = a™(a® - d" - ¢™ + b") (mod m).
Therefore, since (a, m) =1,
a”+ b" = e+ d" (mod m).

Conversely, assume II and assume (£, m) = 1. Thus, there is an integer a
such that at = ed (mod m). Hence, by II,

a®+ t" = e + d" (mod m).
Therefore,

0 = 07‘;" = (tn - dn - e + a”)t" = th - dntn - cntn + qrt?
t2" - drt" - eMt" + e™d™ = (7 - e™) (" - d™) (mod m).

1t

Theorem 10

If an dinteger m has property P(2k), where k is a positive integer, then
there is an integer ¢ such that (¢, m) = 1 implies

(t% - e*)(tk = 1%) = 0 (mod m).

Proof: Assume m = pilpzl... p;f has property P(2k). We can choose ¢ such

., c; are chosen as

that ¢ = ¢, (mod pff) for ¢ =1, 2, ..., j, where cys C j

: PR

follows:
For p, = 2, ¢; = 1 if k is an even integer and c¢; = 3 if k is
an odd integer. For p;, an odd prime, c¢; =1 if p:i has prop-
erty P(k); otherwise, choose c¢; such that c¢;j = -1 (mod p??).
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The converse of Theorem 10 is false. A counterexample is kK = 2 and m = 64.
We do have that (¢, 64) = 1 implies that

(¢#%2 = 1)(¢% - 1) = 0 (mod 64),

but 64 does not have property P(4). The reason (2 - 1)(t? - 1) = 0 (mod 64)
is because t odd implies 8[(1;2 - 1).

The next theorem is a generalization of Theorem 2 of [3].
Theorem 11

Let k be an odd positive integer. The following two conditions are equiva-
lent.
I. There is an integer d such that if ab = d (mod m), then
ak + b = 1 + d* (mod m).
II. m has property P(2k).

Proof: Assume I and assume (2, m) = 1. Thus, there is an integer y such
that 2y = d (mod m). Since xy = d (mod m) and (-1)(-d) = d (mod m), by I,

zk + y* =1 + d* (mod m) (1)
and
-1 - d¥ = (-1)* + (-d)* = 1 + d* (mod m). (2)
If m is an odd integer, then by (2), d¥ = -1 (mod m). Hence, by (1),
xk = —yk (mod m).
Therefore,
z?* = —zky* = -d¥ = 1 (mod m).

If m is an even integer, then since (x, m) = 1 and by (2), 2 divides x*¥-1
and m/2 divides d* + 1. Thus,

0= @+ 1)(xk-1) =dra* - d*+ 2% -1 (mod m). (3)
Therefore, by (1) and (3),
xzk = xk(l + dk - yk) = xk + dkxk _ xkyk
xk + d*z* - d* = 1 (mod m).

Now assume m has property P(2k). To prove I, we will prove that if ab = -1

(mod m), then a* + b*¥ = 0 (mod m). Therefore, assume ab = -1 (mod m). Hence,
(a, m) = 1. Thus,

0 = g?* - 1 = g?* + (ab)* = ak(a* + b*) (mod m).

Since (a, m) = 1, this implies that gk + b* = 0 (mod m).

1l
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LETTER TO THE EDITOR

Dear Dr. Bergum:

A paper by Charles R. Wall entitled "Unitary Harmonic Numbers' appeared in
the February 1983 issue of The Fibonacci Quarterly. We thought you might be
interested in knowing that a paper with the same title and similar content was
published by us (P. Hagis & G. Lord) in the Proceedings of The American Mathe-
matical Society,v. 51, 1975, pp. 1-7. Comparing Wall's results with ours, you
will see that both of Wall's theorems contain minor errors. Thus, there are 45
(not 43) unitary harmonic numbers less than 10°, including 1512 = 2%3%7 and
791700, both of which were missed by Wall. And, since w(1512) = 3, there are
24 (not 23) unitary harmonic numbers 7 for which w(n) < 4.

It should also be mentioned that Wall's conjecture that '"there are only
finitely many unitary harmonic numbers with w(#n) fixed" is Theorem 2 in our
paper.

Sincerely,

Peter Hagis, Jr.

Graham Lord

RESPONSE

Dear Dr. Bergum:

Professors Hagis and Lord are correct in their observations. The omission
of 1512 and 791700 resulted from an oversight which is entirely my responsi-
bility. The duplication of their earlier work was unfortunate but done in in-
nocence; it is doubly unfortunate that neither the referee nor I was aware of
the earlier paper.

Independent but duplicate results are inevitable. One hopes that a re-
invented wheel is in some way superior; in this case, alas, the earlier model
was better in all respects. I apologize to you and to readers of The Fibonacci

Quarterly.
Sincerely,

Charles R. Wall

0604
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