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1. INTRODUCTION

J. R. Bastida shows in his paper [1] that, if u € R, u > 1, and (x,),50 is
a sequence given by

= e, + V(2 - 1)(x2 - z2) + (x, - uc,)2, n >0, 1

xn+l

then x,,, = 2ux,,; - x,, n 2 0. So, if the numbers u, x,, and x, are integers,
it results that x, is an integer for any n = 0.

Bastida and DeLeon [2] establish sufficient conditions for the numbers u,
t, Xy, and x; such that the linear recurrence

- tx;, (2)

can be reduced to a relation of form (1), between x, and x,,,. Consequently,
the relation's two consecutive terms of Fibonacci, Lucas, and Pell sequences
are given in [2].

S. Roy [6] finds this relation for the Fibonacci sequence using hyperbolic
functions.

In this paper we shall prove that if a sequence (x,),>; satisfies a linear
recurrence of order » 2 2, then there exists a polynomial relation between any
r consecutive terms. This shows that the linear recurrence of order r was re-
duced to a nonlinear recurrence of order r - 1.

From a practical point of view, for r 2> 3, expressing x, in the function of
Z,_,p41 is difficult, because we must solve an algebraic equation of
degree > 3 and choose the "good solution."

If »r 2, we can do this in many important cases. An application of this
case is a generalization of the result given in [3].

x = 2ux

n+2 n+1l

L1

I We

2. THE MAIN RESULT

Let (x,),>; be a sequence given by the linear recurrence of order r,

r
T, = DML, g1 M 2P L X =0, 1 <171 < »p, (3)
k=1
where 01, ..., 0, and a;, ..., Ay are given real numbers (they can also be com-
plex numbers or elements of an arbitrary commutative field). Suppose a; # 0.
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For n 2 r, we consider the determinant

xn—r+1 n=-r+2 n-1 Ly
n-r+2 xn—r+3 n xn+l
S (4
n-~1 n n+r-3 n+r-2
n n+l n+r-2 ntr-1

and then prove the following theorem.

Theorem 1. Let (x,),>; be a sequence given by (3) and let D, be given by (4).
Then, for any n 2 r, we have the r relation
= (r-1)(n-r) n-r
D, = (-1 Vemngnrp (5)

Proof: Following the method of [4], [5], and [7] (for r = 2), we introduce
the matrix

n-r+l n-r+2 Ly Ly
xn—r+2 xn-r+3 Ly xn+1
T . (6)
Lo} Ly e Lyyr-3 Lytr-2
Ly n+1 xn+r—2 xn+r—l

It is easy to see that

[0 1 0 0 0 0 0]
0 0 1
o 0 0 0 ... 0 1 0 An = Ans1s (7)
0 1
a; 4, az  a, Apop Ay Gp
so that
_ . . _
0 1 .
0 0 0 0 0 1 0 Ap = Ane (8)
0 0 1
a; 4a; az  ay Apop Gpoy G
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Passing to determinants in (8), we obtain
((-D)""*a))" "D, =D, for n > r;

that is, the relation (5) is true.

Theorem 2. Let (x,),>1 be the sequence given by the linear recurrence (3).
There exists a polynomial function of degree », F,:R" > R, such that the rela-
tion

Ful@ys Bpoqs vevs Tpoppq) = (1D EDO G2, (g a1y el ) (9

is true for every n 2 r.

Proof: Observe that, from the recurrence (3), we can compute the value of
D, knowing Gy, Ogs «ees Gp. Also, from the recurrence (3), we can express suc-—
cessively all elements of D, as a function of the terms X,, X,_15 +evs LTp_pi1
of the sequence (x,),>1. Thus there exists a polynomial function of degree r,
F.:R” -~ R such that the relation (9) is true.

If we suppose that the equation
Folys Tpons wens Tpoppr) = (DE VD G2=2p (q i, ay)

can be resolved with respect to x,, we find that x, depends only on the terms
Ly-1s Lu-2s eoes Ly_pt1-
If this is possible, the expression of x, is, in general, very complicated.
When » = 2, we obtain

F,(z, ) = 2 - a,xy - a,y’, (10)

and it results that, for the sequence (x,),>; given by
T, = AT, T ax, s 7 Z 3, L, =0y, X, = Oy, (11)
the relation F,(x,, 2,_,) = (-1)"a} ?F,(a,, a,) holds. The last relation is

the first result of [2], where it was proved by mathematical induction. If we
write this relation explicitly, we obtain

- -2 2 2
(22, - ayx,_1)% = (a3 + ba)x2_ | + 4(-1)""tal "2 (a02 + a,0.0, - a2).  (12)
From the relation (12), under some supplementary conditions concerning the
sequence (x,),>1, We can express &, in terms of x,_ ;.
Again, from (12), it follows that if the sequence satisfies (11), where
QAys dys Ogs O, €N, then for any n 2 3,
2 2 -1 _n-2 2 2
(a5 + bdapx. | + 4(-D)""tal"*(a0] + a,0,0, - 0F)
is a square. This result is an extension of [3].
In the particular case r = 3, after elementary calculation, we obtain

Folx, y, 2) = % - (a, + azaa)y3 - a%za + 2a3m2y + azmzz

I

(a2 + a,a)y’z - (a} - ay)xy®
- ajasxs® - 2a,a,yz% + (3a; - a,as)ayz.
So from relation (9), we get that, for the linear recurrence
T, = G1Ty-3 + Ao,y * A3%py_1, N 2 b, Xy = 0y, Xy = Op, Xy = Ogs (13)

. _ n-3p .
the relation F,(x,, 2, 15 Z,_,) = a] Fs(&3, Oys al) is true.
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