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Recently, the first author [1] showed that 

Fn + 5 E Fn + Fn-5 (̂ d 10), (1) 

where Fn i s t h e nth F ibonacc i number, de f ined by Fn+1 = Fn+Fn_19n^29 w i th 
F x = F2 = 1. I t was a l s o shown [1] t h a t t h i s r e s u l t g e n e r a l i z e s to a sequence 
{Sn}°l def ined by 

Sn+1 = Sn + Sn-1»
 n > 2> 

with S1 = c, S2 = <i, where c and 6? are nonnegative integers. The nonnegative 
restriction was imposed in order to guarantee that each member of the sequence 
is a positive number. However, the result is, in fact, valid for any integers 
c and d. 

The purpose of this paper is to generalize (1) further. We will see that 
the role played by the integer 5 in (1) can, in the generalization, be played 
by any prime p ^ 5. 

We begin by introducing a more general sequence {Tn}^ defined by 

Tn+1 = aTn - bTn_ls with T1 = c, T2 = ds (2) 

where a, b, c9 and d are integers with the restriction b 4- 0 (and exclusion of 
the trivial case where o = d = 0). We write {a, 3) t o denote the set of solu-
tions of the quadratic equation x2 - ax + b = 0. Two particular choices of c 
and d in (2) give rise to sequences {Tn} of special interest to us. We denote 
these by {Un}Zm and {V^Z^* where 

Un = (a" - 3n)/(a - 3) (3) 
and 

Vn = an + 3n. (4) 

For {Un}s o = 1 and d = a while, for {Vn} , o = a and a7 = a2 - 2b* These se-
quences have been studied by Horadam [4]. [If a = 3s we replace (3) and (4) by 
the limiting forms Un = nan~1 and Vn = 2an

s respectively. Note that, in this 
case, b = a2/4 and a = a/2.] For the special case of (2) where a = -b = 1, the 
sequences {Un} and {Vn} are, respectively, the Fibonacci and Lucas numbers for 
which (3) and (4) are the well-known Binet forms. We will write {Ln} to denote 
the Lucas sequence. 

Using a3 = b9 we readily deduce from (3) and (4) that 

U.„ = -b-"Un (5) 
and 

-n n 
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We will require (5) later. We also need two lemmas connecting the sequences 
{Un} and {7n}. The Fibonacci-Lucas forms of these (corresponding to a=-b=l) 
are given in Hoggatt [3]. 

Lemma 1: For all integers k9 

h+i - bUk_± = Vk. (6) 

Proof: This is proved by induction or directly by using the generalized Binet 
forms (3) and (4). 

Lemma 2: For all integers n and k9 

Un + k+bkVn_k = UnVk. (7) 

Proof: The proof may again be completed either by induction or by direct veri-
fication using (3) and (4). For the induction proof, we begin by verifying (7) 
for n = 0 and 1, with the aid of (5). 

We generalize this last result to the sequence {Tn} defined by (2). 

Lemma 3: For all integers n and k9 

Tn + k + bkTn_k = TnVk. (8) 

Proof: We show by induction that 

Tn = dUn-l ~ boUn_2, (9) 

and hence verify (8) directly from (7). 

The results which we have obtained thus far are, in fact, valid when a9 b9 
c9 and d in (2) are real. However5 for the divisibility results which follow, 
we require integer sequences; hence, we require a, b9 c, and d to be integers. 
Also, in view of (5), we need to restrict {Tn} to nonnegative n unless \b\ = 1. 

We now prove our first divisibility result. 

Lemma k: For any prime p5 

Vp = a (mod p). (10) 

Proof: We need to treat the case p = 2 separately. 

Since V2 = a2 - 2b5 

V2 - a = a{a - 1) - lb = 0 (mod 2) 

for any choice of integers a and b. 
If p is an odd prime, 

a? = (a + B)z -,?„(?K*»'-
From a3 = b9 we obtain 

ap'rBr + a r 3 p _ r = br(aP~2r + Hp'2r). 
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and thus 

In the latter summation, we note that 

(P) = 0 (mod p) 

for each r and the proof is completed by applying Fermatfs theorem 

ap E a (mod p). 

For the Fibonacci-Lucas case (where a = ~b = 1) 9 Lemma 4 yields 

£p = 1 (mod p) 

for any prime p. This special case, although not quoted explicitly, is easily 
deduced from congruence results for the Fibonacci numbers given in Hardy and 
Wright [2]. 

We now state the first of our main results. 

Theorem 1: For all n ̂  p and all primes p, 

Tn + p = aTn ' bTn_p (mod p). (11) 

Proof: The proof follows from Lemmas 3 and 4 and Fermat?s theorem* If \b\ = 
1, then (11) holds for all values of n. 

Observe how the congruence relation (11) mimics the pattern of the recur-
rence relation (2). 

To strengthen Theorem 1 for primes greater than 3, we first require: 

Lemma 5- If k ^ 0 (mod 3 ) , then for all choices of a and b9 

Vk E a (mod 2). (12) 

Proof: In verifying (12) for all possible choices of a and b5 it suffices to 
consider {a, b) = {0, 1}. If a is even and b is even or odd, Vk is even for 
all k and (12) holds. If a is odd and b is even, Vk is odd for all k and again 
(12) holds. Finally, if both a and b are odd, then Vk is even if and only if 
k E 0 (mod 3 ) , and the lemma is established. 

Theorem 2: For all n > p, where p is any prime greater than 3, 

Tn + p E aTn - bTn_p (mod 2p). (13) 

[We note that (1) is the special case of (13) obtained by taking p = 5 and 
a = -b = c = d=l»] 

Proof: From the result of Theorem 1, It remains only to show that 

Tn+p - aTn + bTn_p E 0 (mod 2). (14) 
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Using Lemma 3S the left side of (14) may be expressed as 

(Vp - a)Tn + (b - bp)Tn.p. 

Observe that b - bp = 0 (mod 2) and Lemma 5 shows that Vp - a = 0 (mod 2) for 
p any prime greater than 3S which completes the proof. 
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