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1. INTRODUCTION 

In the January 23, 1985, issue of a local (Armidale) newspaper, L. Wilson, 
of Brisbane, announced that;, if x = Fn , y = Fn + 1 (Fn + 2 = x + y) are successive 
numbers of the Fibonacci sequence {Fn}, then x,y (>x) satisfy the equation of 
degree 24: 

((x5y - xhy2 - x3y3 + ?>x2yh - 3xy5 + y6)2 - bx8 - 13x4 - l)2 

- 144^12 - 144^8 - 3 6^ = 0. (1) 

This is a slight simplification of the equation announced three weeks ear-
lier by him in the same newspaper. 

Wilson offered no proof of his assertion. 
It is the purpose of this paper to outline a proof of Wilson's result by 

analyzing the structure of (1). 
We exclude n = 0 from our considerations to accord with the commencing Fi-

bonacci number F1 = 1 used by Wilson [although x = 0, y = 1 do satisfy (1)]. 
First, observe that Simsonfs formula for {Fn}s namely, 
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Simson's formula will be the basic knowledge used in our proof. 

2. PROOF OF THE ASSERTION 

After a little elementary algebraic manipulation, the left-hand side of (1) 
factorizes as 

where 

(y2A2 - B2){y2A2 - B\) , (5) 

A = xs - xhy - x3y2 + "Sx2y% - 3xyh + y5, 
Bx = 2xh - 3x2 + 1, (6) 

B2 
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Numerical checking with small values of n establishes that the first fac-
tor in (5) vanishes for n odd9 while the second factor in (5) vanishes for n 
even. This arithmetical evidence suggests that we may associate this first 
factor (and therefore Bx) with equation (3) and the second factor (and there-
fore B2) with equation (4). 

Accordingly9 from (3), we have immediately (x2 - I)2 = (y2 - xy)2 which, 
after tidying up and applying (3) again, gives us 

B1 = y{2yz - ky2x + 2x2y - x + y). (7) 

Similarly, 

B2 = y(2y3 - hy2x + 2x2y + x - y). (8) 

Now y - x is a factor of A5 B1$ B2» So (6) becomes 

A = (y - x)(yk - 2xy3 + x2y2 - xh) = (y - x)a3 

B1 = y{y - x)(2y2 - 2xy +1) = y(y - x)blS (9) 

,52 = y(y - ̂ )(2i/2 - 2at/ - 1) = y(y - a:)fc2. 

Repeated multiplicative maneuvering with (3), followed by substitution in 
(9) and simplification, yields 

b1 = -a. (10) 

Appealing to B and (4) by a similar argument, we find 

b2 = a. (11) 

From (9), it follows that (5) reduces to 

y\y - x)h(a2 - b\)(a2 - b\), (12) 

whence, by (10) and (11), 

2/̂(2/- - x)k(a2 - £2)(a2 - b\) = 0, (13) 
i0e. , 

(a2 - £2)(a2 - b\) = 0. (14) 

Thus, the validity of (1) is demonstrated. 

Variations s perhaps simplifications, of the above reasoning no doubt exist; 

3. REMARKS 

Rearranging the four factors in (14) leads to. 

{{a + b±)(a - b2)}{(a - b±){a + b2)} = 0. (15) 

By (10) and (11), 

(a + b^(a - b2) = 0. (16) 
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Equation (16), which is of degree 8 in y, is thus also satisfied by succes-
sive pairs of Fibonacci numbers. 

Even more ponderous and complicated equations of higher, but appropriate, 
degrees are suggested by (14). For instance, 

(ah - 2>J)(a* - b\) = 0, 

of degree 32 in z/, is satisfied by the Fibonacci conditions. 
Only the Fibonacci numbers provide the structure for (1). While similar 

patterns in (2), (3), and (4) exist for Lucas and Pell numbers, equations dif-
ferent from (1) would be germane to them. 

Regarding the factors in (13) involving the fourth power, we remark that 
y = 0 If n = -I (excluded), while y - x = 0 1fn=l9 i.e., when F1 = F2 = 1. 

Finally, we comment that (3) and (4) form the nucleus of a geometrical ar-
ticle on conies [2] by one of the authors, which was followed by an extension 
[1] by Bergum. One is prompted to speculate on the possibility of some arcane 
geometry of curves being obscured by the symbolism of (1). 
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