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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = ̂ n+l
 + Fn> FV = °> *"l = 1 

and 

PROBLEMS PROPOSED IN THIS ISSUE 

B-592 Proposed by Herta T. Freitag, Roanoke, VA 

Find all integers a and b, if any, such that Fa Lb + F a _1Lb_1 is an integral 
multiple of 5. 

B-593 Proposed by Herta T. Freitag, Roanoke, VA 

Let A(n) = Fn+1Ln + FnLn+1. Prove that A(l5n - 8) is an integral multiple 
of 1220 for all positive integers n. 

B-59̂  Proposed by Herta T. Freitag, Roanoke, VA 

Let 

A ^ = Fn + iLn +Fn^n + 1 and B (n) = t i,A(k). 
j = 1 k = 1 

Prove that B(n) E 0 (mod 20) when n E 19 or 29 (mod 60). 

B-595 Proposed by Philip L. Mana, Albuquerque, NM 

Prove that 

±f<n-k)>z(»+
6*) + (»+

6l) N 5 ) . 
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B~596 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let 
m 

S(n9 k, m) = X Fni + k-
i = ± 

For positive integers a5 m, and k, find an expression of the form XY/Z for 
£(4a5 k, m), where Z9 J3 and Z are Fibonacci or Lucas numbers. 

B-597 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Do as in Problem B-596 for £(4a + 2, k3 2b) and for £(4a + 2, k, 2b - i), 
where a and 2) are positive integers. 

SOLUTIONS 

Fibonacci-Lucas Hyperbola for Odd n 

B-568 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

(F19 £]_), (-c 3 s £3)5 °*«s (•c2n+l5 -^2n+l)9 ° 8 a * 

Solution by C. Georghiou, University of Patras, Greece 

It is easy to show that the given points do not lie on a straight line. 
However, 

L2n+l'F2n+l + A a s n -> °°, 
and It is also known that 

5 ^ + i - ^„ + i = 4. 
Therefore, the given points lie on a branch of the hyperbola with equation 

5x2 - y2 = 4. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Herta T. Freitag, L. Kuipers, 
J. Z. Lee & J. S. Lee, Bob Prielipp, Sahib Singh, Lawrence Somer, J. Suck, Tad P. 
White, and the proposer. 

Fibonacci-Lucas Hyperbola for Even n 

B-569 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

(*V LQ), (F2, L2), . . . , (F2n, Lzn), . . . . 

Solution by J. Z. Lee, Chinese Culture University, Taipei, Taiwan, R.O.C. & 
J.S. Lee, National Taipei Business College, Taipei, Taiwan, R.O.C. 

A simple curve passing through all of the points (F2 * L2) * (F^9 L^), . .., 
(F2n> L2n), . . . is y2 - 5x2 = 43 since L2 - 5F2= 4(-l)n. 
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Also solved by Pauls. Bruckman, L*A„ G« Dresel, Herta r. Freitag, C. Georghlou, 
L. Kuipers, Bob Priellpp/ Sahib Singh, Lawrence Somer, J. Suck, Tad P. White, 
and the proposer, 

Fibonacci Squareroot Triangle with Fixed Area 

B-570 Proposed by Herta T. Freitag, Roanoke, VA 

Let a, bs and c be the positive square roots of F2n_ls ^in + i* an(^ ^in + s* 
respectively. For n = 1, 2, ..., show that 

(a + b + c) (-a + b + c) (a - b + o) (a + b - o) = 4. 

Solution by L.A. G. Dresel, University of Reading, England 

Let 

P = (a + b + c)(-a + b + o)(a - b + o)(a + b - c). 
Then, since 

(a + b + c)(a - b + c) = (a + e) 2 - &2
5 

and 
(a + & - a) (-a + £ + o) = b2 ~ (a - c)2

s 

we have 

P = (2a<? + a 2 + c2 - Z?2)(2ac - a2 - c2 + £2) 

= 4 a V - (a2 + o2 - £ 2 ) 2 

= 4F F - (F + F - F ) 2 

= 4F F - 4 F 2 

2n-l 2n+3 2n+l 
since 

^2n+3 = 3F2n+1 - F2n~l' 

Using the Binet forms, we find that F2n_1F2n+3 = F2n + 1 + 1; hence, P = 4. 
We note in passing that Heron's formula gives the area of a triangle of 

sides a, bs a as hvPs and therefore the area of a triangle whose sides are the 
positive square roots of F2n_l3 F2n+l9 and F2n+3 will be h for n= 1,2, 3, ... . 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, J. 
Z. Lee <£ J. 5. Lee, Sol? Prieiipp, Sahib Singh, Lawrence Somer, J. Suck, and the 
proposer. 

Weighted Rising Diagonal Sum 

B-571 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Conjecture and prove a simple expression for 

[y3 n In - r\ 

where [n/2] is the largest integer m with 2m < n. 
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Solution by Philip L, Mana, Albuquerque, NM 

Let S be the given sum and q = [n/2]. Then 

r = 0 N 1 ' r = 0 n i \ i I n = 1 

~ ^ n + 1 "*" £ n ~1 = -̂  rc » 

using the rising diagonal formula 

q 

i 
r= 0 

2-> \ y, j n + 1 ' r 

Also solved by Paul 5. Bruckman, Oroardo Brugia & Piero Filipponi, L«A« G° Dre~ 
sel, Herta 2*. Freitag, C. Goerghiou, L. Kuipers, J. Z. Lee & J. S. Lee; F. S. 
Makri & D. Antzoulakos, Bob Prielipp, J, Suck, Tad P. White, and the proposer. 

Continued Fraction 

B-572 Proposed by Ambati Jaya Krishna, Student, Johns Hopkins University, 
Baltimore, MD, and Gomathi S« Rao, Orangeburg, SC 

Evaluate the continued fraction: 

2 
1 + 

3 + 
5 + 7 + 

Solution by C. Georghiou, University of Patras, Greece 

This is the same as Problem H-394 in this Quarterly (Vol. 24, no. 1 [1986], 
p. 88] proposed by the same authors. Its solution is as follows: 

From the theory of continued fractions, It is known that (See, for ex-
ample, Mo Abramowitz& A. Stegun, Handbook of Mathematical Functions [New York: 
Dover, 1970], p. 19): 

1 x , x2 , / 1 \« xU 
g (X) = -i- - -±— + — ^ - . . . + (-1)" 
<J n rr rr n rr rr rr aQ

 a
0

a i aQa1a2
 a o a i a 2 * * B an 

, a x a x a x 

Take a n = 2n + 2 and x = 1. Then, the n t h convergent of t h e given cont inued 
f r a c t i o n , / n , i s given by 

Since l im ^ = 1 - £~1 / 2
9 we ge t / = (e1/2 - l ) " 1 . 

Also solved by Paul 5 . Bruckman, L. Kuipers & Peter S» J* Shiue, J . Z. Lee <S J . 5 . 
Lee , and the proposer. 
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B-573 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

For all nonnegative integers n9 prove that 

k ? 0 ( f c ) ^ - * - * + 5
k ? 0 ( f c ) ^ - * -

Solution by Bob Prielipp, University of Wisconsin-Oshkoshr WI 

We shall show that 

S = ±o(n
k)(LkLn_k -5FkFn_k) = 4, 

which is equivalent to the required result. 

LkLn_k - 5FkFn_k = (ak + ^k)(an~k + $n~k) - (ak - e>k)(an~k - ^n~k) 

= 2a*B7,-k + 2gfean-fe. 
Thus, 

S = 2 £ lr!)ake>n-k + 2 £ (^)&kan-k = 4(a + 3)n [by the Binomial Theorem] 
k = 0\K./ k = 0^K/ 

= 4 . ln = 4. 

illso solved Jby Paul 5. Bruckman, L. A« G. Dresel, Piero Filipponi, Herta T. Frei-
tag, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Sahib Singh, J. Suck, Tad 
P. White, and the proposer. 
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